Hackaday guide to Lathes

Lathe Headstock Alignment: Cutting A Test Bar

Let’s say you’ve recently bought a lathe and set it up in your shop. Maybe you’ve even gone and leveled it like a boss. You’re ready to make chips, right? Well, not so fast. As real machinists will tell you, you can use all the levels and lasers and whatever that you want, but the proof is in the cut. Precision leveling gets your machine in the ballpark (machinists have very small ballparks) but the final step to getting a machine to truly perform well is to cut a test bar. This is a surefire way to eliminate any last traces of twist in the bed.

There are two types of test bars. One is for checking headstock-to-ways alignment, which is what we’re doing here. There’s another type used for checking tailstock alignment, but that’s a subject for another day.

Continue reading “Lathe Headstock Alignment: Cutting A Test Bar”

Hackaday guide to Lathes

The Machinists’ Mantra: Level Thy Lathe

Let’s say you’ve gone and bought yourself a sweet sweet metal lathe. Maybe it’s one of the new price-conscious Asian models, or maybe it’s a lovely old cast iron beast that you found behind a foreclosed machine shop. You followed all the advice for setting it up, and now you’re ready to make chips, right? Well, not so fast. Unlike other big power tools, such as band saws or whatever people use to modify dead trees, machine tools need to be properly level. Not, “Hurr hurr my carpenter’s level says the bubble is in the middle”, but like really level.

This is especially true for lathes, but leveling is actually a proxy for something else. What you’re really doing is getting the entire machine in one plane. Leveling is a primitive way of removing twist from the structure. It may not seem like a huge piece of cast iron could possibly twist, but at very small scales it does! Everything is a spring, and imperceptible twist in the machine will show up as your lathe turning a couple thousandths of taper (cone) when it should be making perfect cylinders. All this is to say, before making chips, level your lathe. Let me show you the way. Continue reading “The Machinists’ Mantra: Level Thy Lathe”

Hackaday guide to Lathes

Preparing For A Lathe: How To Move 3000 Pounds Of Iron

You say to yourself, “Self, I want, nay, need a lathe”. Being a good little trooper, you then did all your research, having chosen Import or American, Imperial or Metric, and all your feed options and such. You then pulled the trigger and the machine is en route to your shop. Now what?

Continue reading “Preparing For A Lathe: How To Move 3000 Pounds Of Iron”

Hackaday guide to Lathes

A Buyer’s Guide To Lathe Options

Lathes are complicated machines, and buying one requires weighing a lot of options. We’ve already talked about buying new Asian, or old American machines (with apologies to the Germans, British, Swiss, and all the other fine 20th century machine tool making-countries). We also talked about bed length and swing, and you ain’t got nothin’ if you ain’t got that swing. Let’s talk about the feature set now. If you’re buying new, you’ll shop on these details. If you’re buying used, knowing the differences will help you pick a good project machine.

Continue reading “A Buyer’s Guide To Lathe Options”

The Precision Upon Which Civilizations Are Built

If you’re interested in making things (particularly metal things), you’re on a road that eventually leads to machine tools. Machine tools have a special place in history, because they are basically the difference between subsistence farming and modern civilization. A bold statement, I realize — but the ability to make very precise things is what gave us the industrial revolution, and everything that snowballed afterward. If you want to build a modern life filled with jet airplanes and inexpensive chocolate, start here.

Precision is more than just a desirable property. It’s a product. It has value, there is competition to create it, and our ability to create it as a species has improved over time. When your “precision product” is in the centimeter range, congratulations — you can make catapults and portcullises. Once you get into the millimeter range, guess what? You can make fine millwork in fancy houses, and indoor plumbing. Once you get sub-millimeter, now things get really interesting. It’s time for steam engines and automobiles. Once you get into the micrometer range, well, now we’re talking artificial heart valves and spaceships. Much like materials science, the ability to create precision is the unsung foundation and driving force of our standard of living.

Okay, so assuming I’ve sold you on the value of this product called “precision”, how do we make it? Machine tools are how humans currently get there, despite the dreams of the 3D printer crowd. Yes, drizzled plastic is great and the future is bright, but for right now, subtractive manufacturing is where it’s at when something has to be perfect.

Continue reading “The Precision Upon Which Civilizations Are Built”

New Lathe Day Is Best Day

As [Quinn Dunki] rightly points out, modern industrial civilization was probably conceived on the bed of a lathe. Turning is an essential step in building every machine tool, including lathes, and [Quinn] decided it was time to invite one into her shop. But she discovered a dearth of information to guide the lathe newbie through that first purchase, and thus was born the first installment in her series on choosing and using a new lathe.

As for the specifics of the purchase, [Quinn]’s article goes into some depth on the “old US iron” versus “new Asian manufacture” conundrum. Most of us would love an old South Bend or Cincinnati lathe, but it may raise practical questions about space planning, electrical requirements, and how much work is needed to get the old timer working again. In the end, [Quinn] took the path of least resistance and ordered a new lathe of Chinese heritage. She goes into some detail as to what led to that decision, which should help other first-timers too, and provides a complete account of everything from uncrating to first chips.

Nothing beats the advice of a grizzled vet, but there’s a lot to be learned from someone who’s only a few steps ahead of her intended audience. And once she’s got the lathe squared away, we trust she’ll find our tips for buying a mill helpful getting that next big shipment delivered.

“All the best things in life arrive on a pallet.” Have truer words ever been spoken? Sure, when the UPS truck pulls up with your latest Amazon or eBay treasure, it can be exciting. But a lift-gate truck rolling up to the curb? That’s a good day.

Machinist Magic: Gauge Block Wringing

In this age of patent trolls and multi-billion dollar companies that make intellectual property claims on plant genes and photographing objects against a white background, you’d be forgiven for thinking that a patent on a plain steel block would be yet another recent absurdity. But no – [Carl Edvard Johansson] got a patent for his “Gauge Block Sets for Precision Measurement” in 1901. As [AvE] shows us with a video on how gauge blocks can be “wrung” together, there’s more to these little blocks than meets the eye.

Gauge block wringing is probably nothing new to experienced machinists, but for the rest of us, it’s a pretty neat trick. To start the show, [AvE] gives us a little rundown on “Jo blocks” and what they’re good for. Basically, each block is a piece of tool steel or ceramic that’s ground and lapped to a specific length. Available in sets of various lengths, the blocks can be stacked end to end to make up a very precise measuring stick. But blocks aren’t merely placed adjacent to each other – they physically adhere to each other via their lapped surfaces after being wrung together. [AvE] demonstrates the wringing technique and offers a few ideas on how this somewhat mysterious adhesion occurs. It’s pretty fascinating stuff and puts us in the mood to get a gauge block set to try it ourselves.

It’s been a while since we’ve seen [AvE] around Hackaday – last time out he was making carbon foam from a slice of bread. Rest assured his channel has been going strong since then, with his unique blend of laughs and insight into the secret lives of tools. Definitely worth checking out, and still skookum as frig.

Continue reading “Machinist Magic: Gauge Block Wringing”