Fantastic Micrometeorites And Where To Find Them

Space is very much the final frontier for humanity, at least as far as our current understanding of the universe takes us. Only a handful of countries and corporations on Earth have the hardware to readily get there, and even fewer are capable of reaching orbit. For these reasons, working in this field can seem out of reach for many. Nevertheless, there’s plenty about the great expanse beyond our atmosphere that can be studied by the dedicated citizen scientist. With the right equipment and know-how, it’s even possible to capture and study micrometeorites yourself!

While you don’t see a meteor shower every day, micrometeorites are actually astoundingly common. They’re just hard to find!

For those new to the field, the terms used can be confusing. Meteoroids are small metallic or rocky objects found in outer space, up to around 1 meter in size. When these burn up upon entering the atmosphere, they are referred to as a meteor, or colloquially known as a shooting star. If part of the object survives long enough to hit the ground, this is referred to as a meteorite, and as you’d expect the smaller ones are called micrometeorites, being on the scale of 2mm or less.

Stardust Proves Hard To Find

Being tiny and having fallen from space, micrometeorites present certain challenges to those who wish to find and identify them. In spite of this, they can be found by using the right techniques and a heck of a lot of hard work.

Continue reading “Fantastic Micrometeorites And Where To Find Them”

NASA Knows Where The Meteors Are

NASA has been tracking bright meteoroids (“fireballs”) using a distributed network of video cameras pointed upwards. And while we usually think of NASA in the context of multi-bazillion dollar rocket ships, but this operation is clearly shoe-string. This is a hack worthy of Hackaday.

droppedimage

The basic idea is that with many wide-angle video cameras capturing the night sky, and a little bit of image processing, identifying meteoroids in the night sky should be fairly easy. When enough cameras capture the same meteoroid, one can use triangulation to back out the path of the meteoroid in 3D, estimate its mass, and more. It’s surprising how many there are to see on any given night.

You can watch the videos of a meteoroid event from any camera, watch the cameras live, and even download the meteoroid’s orbital parameters. We’re bookmarking this website for the next big meteor shower.

cameraThe work is apparently based on [Rob Weryk]’s ASGARD system, for which the code is unfortunately unavailable. But it shouldn’t be all that hard to hack something together with a single-board computer, camera, and OpenCV. NASA’s project is limited to the US so far, but we wonder how much more data could be collected with a network of cameras all over the globe. So which ones of you are going to take up our challenge? Build your own version and let us know about it!

Between this project and the Radio Meteor Zoo, we’re surprised at how much public information there is out there about the rocky balls of fire that rain down on us every night, and will eventually be responsible for our extinction. At least we can be sure we’ll get it on film.

Project Sky Canvas - artificial shooting stars

Painting The Sky With Shooting Stars

Japanese company ALE has been working on a new type of sky show, artificial shooting stars, literally creating an artificial meteor shower at a height of 40 to 50 miles (60 to 80km). The show will be visible to anyone within a 125 mile diameter area (200km), meaning that people in New York city and Philadelphia or Los Angeles and San Diego can watch the same show. Aptly named, they’re calling the project “Sky Canvas”.

The plan is to have a satellite, containing around 500 to 1000 source particles, discharge the particles with a specially designed device. As the video below shows, by ejecting the particles in a continuous manner, rather than all at once, they’ll create the equivalent of a meteor shower. The particles will travel around 1/3rd the way around the Earth before entering the atmosphere, creating the shower of shooting stars. Different colors will be possible by using different materials for the particles, something this fireball cannon illustrates.

Continue reading “Painting The Sky With Shooting Stars”

Listen To Meteors Live

When the big annual meteor showers come around, you can often find us driving up to a mountaintop to escape light pollution and watching the skies for a while. But what to do when it’s cloudy? Or when you’re just too lazy to leave your computer monitor? One solution is to listen to meteors online! (Yeah, it’s not the same.)

Meteors leave a trail of ionized gas in their wake. That’s what you see when you’re watching the “shooting stars”. Besides glowing, this gas also reflects radio waves, so you could in principle listen for reflections of terrestrial broadcasts that bounce off of the meteors’ tails. This is the basis of the meteor burst communication mode.

[Ciprian Sufitchi, N2YO] set up his system using nothing more than a cheap RTL-SDR dongle and a Yagi antenna, which he describes in his writeup (PDF) on meteor echoes. The trick is to find a strong signal broadcast from the earth that’s in the 40-70 MHz region where the atmosphere is most transparent so that you get a good signal.

This used to be easy, because analog TV stations would put out hundreds of kilowatts in these bands. Now, with the transition to digital TV, things are a lot quieter. But there are still a few hold-outs. If you’re in the eastern half of the USA, for instance, there’s a transmitter in Ontario, Canada that’s still broadcasting analog on channel 2. Simply point your antenna at Ontario, aim it up into the ionosphere, and you’re all set.

We’re interested in anyone in Europe knows of similar powerful emitters in these bands.

As you’d expect, we’ve covered meteor burst before, but the ease of installation provided by the SDR + Yagi solution is ridiculous. And speaking of ridiculous, how about communicating by bouncing signals off of passing airplanes? What will those ham radio folks think of next?

Hackaday Prize Entry: Detecting New Meteor Showers

Go out to a field on a dark night, far away from city lights, and you might just see a shooting star. A single meteor is just a tiny fraction of all the space dust that hits our atmosphere every day; most of it goes completely unnoticed. To get a better idea of where these meteoroids come from, [Dario] and [Denis] have come up with a network of meteor-detecting ground stations to search for these extraterrestrial visitors and make it possible to retrieve the largest of these fallen stars.

This project started at the Croatian Meteor Network, a team with about two dozen surveillance cameras pointed skyward as an unblinking eye, looking for meteoroids entering the Earth’s atmosphere over the Balkans and the Adriatic sea. When two cameras detect a meteor, the path it came from – and its orbit around the Sun – can be computed. The team has already found a possible new meteor shower (PDF) that is active from late August to the middle of September.

With hundreds of cameras scattered around the globe, it’s possible to triangulate the position of these meteors and their orbit around the Sun, just like what was done with the innumerable Russian dash cams after the Chelyabinsk meteor. It’s a great project, and also one that requires a lot of computer image processing – a favorite around these parts.

The 2015 Hackaday Prize is sponsored by: