Big Chemistry: Synthetic Oil

For as long as I’ve been driving, I’ve been changing oil. Longer than that, actually — before I even got my license, I did a lot of the maintenance and repair work on the family car. It seemed natural to do it back then, and it continues today, despite the fact that it would probably be cheaper overall to farm the job out. I keep doing it mainly because I like keeping in touch with what’s going on with my cars.

Oil changes require supplies, but the last few times I made the trip to BigBoxMart I came back empty-handed. I don’t know whether it’s one of the seemingly endless supply chain problems or something else, but the aisle that usually has an abundance of oil was severely understocked. And what was there was mostly synthetic oil, which I’ve never tried before.

I’ve resisted the move to synthetic motor oil because it just seemed like a gimmick to relieve me of more of my hard-earned money than necessary. But now that it seems like I might have little choice but to use synthetic oil, I thought I’d do what normally do: look into the details of synthetic oils, and share what I’ve found with all of you.

Continue reading “Big Chemistry: Synthetic Oil”

Twin jet engines mounted on tank treads

Big Wind Is The Meanest Firefighting Tank You Ever Saw

As the Iraqi army retreated at the end of the first Gulf War, they took the term “scorched Earth policy” quite literally. Kuwaiti oil wells were set alight en masse, creating towering infernos that blackened the sky.

As it turns out, extinguishing a burning oil well is no easy feat. In the face of this environmental disaster, however, a firefighting team from Hungary made a name for themselves out on the desert sands, astride a jet-engined tank named Big Wind.

Continue reading “Big Wind Is The Meanest Firefighting Tank You Ever Saw”

Flip dot display submerged in oil

Giving Flip Dots The Oil Treatment To Shut Them Up

Flip dot displays are awesome — too bad it’s so hard to find large panels to play around with, but that’s for another article. [Pierre Muth] has been working to find different and interesting things to do with these flip dots, and he recently explored how you can flip them very very gently.

Now you likely remember [Pierre’s] work from earlier this year where he was pushing the speed of the displays as high as possible. Using a capacitor discharge trick he made it to 30 fps, which absolutely stunning work. This time around he attempted to do something equally impressive by micro-stepping the dots. It’s a bonkers idea and unfortunately didn’t work. It seems the dots are engineered for two steady states and you just can’t get very good performance with the in-between states.

However, along the way he had an a-ha moment. Part of what he wanted to do with the microstepping was to slow down the change of the state and for that, he just grabbed a viscous fluid that’s thicker than air: Vaseline oil. (We’d imagine it’s not the cocoa-scented variety, but who knows?) He’s taken a page out of the mineral-oil-cooled PC sub-genre and applied it to flipdots. But watch the video after the break and you’ll see that the slower animations are super pleasing to watch, and the clickity-clackity that was driving you nuts while trying to works is now whisper quiet. It’s a new dawn for displays.

Continue reading “Giving Flip Dots The Oil Treatment To Shut Them Up”

Oil Wells Done Rube-Goldberg Style: Flatrods And Jerk Lines

The news is full of the record low oil price due to the COVID-19-related drop in demand. The benchmark Brent crude dipped below $20 a barrel, while West Texas intermediate entered negative pricing. We’ve all become oil market watchers overnight, and for some of us that’s led down a rabbit hole of browsing to learn a bit about how oil is extracted.

Many of us will have seen offshore oil platforms or nodding pumpjacks, but how many of us outside the industry have much more than a very superficial knowledge of it? Of all the various technologies to provide enlightenment of the curious technologist there’s one curious survivor from the earliest days of the industry that is definitely worth investigation, the jerk line oil well pump. This is a means of powering a reciprocating pump in an oil well not through an individual engine or motor as in the pump jacks, but in a system of rods transmitting power over long distances from a central location by means of reciprocating motion. It’s gloriously simple, which has probably contributed to its survival in a few small-scale oil fields over a century and a half after its invention.

Continue reading “Oil Wells Done Rube-Goldberg Style: Flatrods And Jerk Lines”

A Look At Liquid Dielectrics

One evening quite a few years ago, as I was driving through my hometown I saw the telltale flashing lights of the local volunteer fire department ahead. I passed by a side road where all the activity was: a utility pole on fire. I could see smoke and flames shooting from the transformer and I could hear the loud, angry 60 Hz buzzing that sounded like a million hornet nests. As I passed, the transformer exploded and released a cloud of flaming liquid that rained down on the road and lawns underneath. It seemed like a good time to quit rubbernecking and beat it as fast as I could.

I knew at the time that the flaming liquid was transformer oil, but I never really knew what it was for or why it was in there. Oil is just one of many liquid dielectrics that are found in a lot of power distribution equipment, from those transformers on the pole to the big capacitors and switchgear in the local substation. Liquid dielectrics are interesting materials that are worth taking a look at.

Continue reading “A Look At Liquid Dielectrics”

Oil-Immersed Raspberry Pi Keeps Its Cool Under Heavy Loads

As a general rule, liquids and electronics don’t mix. One liquid bucks that trend, though, and can contribute greatly to the longevity of certain circuits: oil. Dielectric oil cools and insulates everything from the big mains transformers on the pole to switchgear in the substation. But what about oil for smaller circuits?

[Lord_of_Bone] was curious to see if an oil-cooled Raspberry Pi is possible, and the short answer is: for the most part, yes. The experimental setup seen in the video below is somewhat crude — just a Pi running Quake 3 for an hour to really run up the CPU temperature, which is monitored remotely. With or without heatsinks mounted, in free air the Pi ranges from about 50°C at idle to almost 70°C under load, which is pretty darn hot. Dunking the Pi in a bath of plain vegetable oil, which he admits was a poor choice, changes those numbers dramatically: 37°C at idle and an only warmish 48°C after an hour of gaming. He also tested the Pi post-cleaning, which is where he hit a minor hiccup. The clean machine started fine but suffered from a series of reboots shortly thereafter. Twelve hours later the Pi was fine, though, so he figures a few stray drops of water that hadn’t yet evaporated were to blame.

Is oil immersion a practical way to cool a Pi? Probably not. It doesn’t mean people haven’t tried it before, of course, but we applaud the effort and the careful experimentation.

Continue reading “Oil-Immersed Raspberry Pi Keeps Its Cool Under Heavy Loads”

Bringing A VIC-20 Back From An Oily Grave

No matter which platform you’re into, retrocomputing is usually a labor of love. The obsolete, the unpopular, the downright weird – old computers of every stripe are found, restored to something like their former glory, and given a new lease on life. It’s heartwarming, in a way. But when a computer has obviously been abused, it takes a little extra effort, of a lot in the case of this oil-submerged VIC-20 restoration.

In the two-part video below, [The 8-Bit Guy] goes through the gory details of bringing this classic Commodore back from the grave. The first video shows the cosmetic rebuild, which given the filthy state of the machine was no mean feat. Cracked open, the guts were found to be filled with an oily residue; [The 8-Bit Guy] chalks that up to a past life in some kind of industrial setting, but we see it more as flood damage. Whatever the sad circumstances on the machine’s demise, the case required a workout to clean up, and it came out remarkably fresh looking. The guts needed quite a bit of cleaning too, mainly with brake cleaner to cut through the gunk.

Part two focuses on getting the machine running again, and here [The 8-Bit Guy] had his work cut out as well. With a logic probe, signal injector, and some good old-fashioned chip swapping, he was able to eliminate most of the potential problems before settling in on some RAM chips as culprits for the video problems he saw at power-up. It all worked out in the end, and the machine looks and acts like new. We’re impressed.

Maybe we shouldn’t question [The 8-Bit Guy]’s call on the VIC-20 being from an industrial setting, though. After all, the “little Amiga that could” ran a school’s HVAC system for over 30 years.

Continue reading “Bringing A VIC-20 Back From An Oily Grave”