Cost-Optimized Raspberry Pi 5 Released With 2 GB RAM And D0 Stepping

When the Raspberry Pi 5 SBC was released last year, it came in 4 and 8 GB RAM variants, which currently retail from around $80 USD and €90 for the 8 GB variant to $60 and €65 for the 4 GB variant. Now Raspberry Pi has announced the launch of a third Raspberry Pi 5 variant: a 2 GB version which also features a new stepping of the BCM2712 SoC. This would sell for about $50 USD and feature the D0 stepping that purportedly strips out a lot of the ‘dark silicon’ that is not used on the SBC.

These unused die features are likely due to the Broadcom SoCs used on Raspberry Pi SBCs being effectively recycled set-top box SoCs and similar. This means that some features that make sense in a set-top box or such do not make sense for a general-purpose SBC, but still take up die space and increase the manufacturing defect rate. The D0 stepping thus would seem to be based around an optimized die, with as only possible negative being a higher power density due to a (probably) smaller die, making active cooling even more important.

As for whether 2 GB is enough for your purposes depends on your use case, but knocking $10 off the price of an RPi 5 could be worth it for some. Perhaps more interesting is that this same D0 stepping of the SoC is likely to make it to the other RAM variants as well. We’re awaiting benchmarks to see what the practical difference is between the current C1 and new D0 steppings.

Thanks to [Mark Stevens] for the tip.

A New Raspberry 5 DSI Cable Makes Using Screens Easier

Arguably the greatest strength of the Raspberry Pi is the ecosystem — it’s well-supported by its creators and the aftermarket. At the same time, the proliferation of different boards has made things more complicated over the years. Thankfully, though, the community is always standing by to help fix any problems. [Rastersoft] has stepped up in this regard, solving an issue with the Raspberry Pi 5 and DSI screen cables.

The root cause is that the DSI cable used on the Raspberry Pi 5 has changed relative to earlier boards. This means that if you use the Pi 5 with many existing screens and DSI cables, you’ll find your flat ribbon cable gets an ugly twist in it. This can be particularly problematic when using the cables in tight cases, where they may end up folded, crushed, or damaged.

[Rastersoft] got around this by designing a new cable that avoided the problem. It not only solves the twist issue, but frees up space around the CPU if you wish to use a cooler. Thanks to modern PCB houses embracing flexible boards, it’s easy to get it produced, too.

This is a great example of the democratization of PCB and electronics production in general. 20 years ago, you wouldn’t be able to make a flex cable like this without ordering 10,000 of them. Today, you can order a handful for your own personal use, and share the design with strangers on a whim. Easy, huh? It’s a beautiful world we live in.

DietPi Version 9.1: Now With Raspberry Pi 5 Support And More

DietPi recently released version 9.1, which among other changes includes new images for the Raspberry Pi 5, Radxa Rock 4 SE and NanoPi R5S/R5C & 6. The Radxa Rock 4 SE image was necessary because the Rock 4’s RK3399 SoC is subtly different from the RK3399-T’s SoC in terms of memory support, which prevents a Rock 4 image from booting on the Rock 4 SE. Meanwhile the Raspberry Pi 5 image is all new and still a bit rough around the edges, with features like the changing of the resolution and camera module support not working yet. These new images are all available for testing.

We covered DietPi previously with their 8.12 release, along with the reasons why you might want to use DietPi over Armbian and Raspberry Pi OS. Essentially DietPi’s main focus is on performance combined with a small installed size, with the included configuration tools and the setup allowing for many more features to be tweaked than you usually find. If the performance improvements, lower RAM usage and faster boot times seen with the Raspberry Pi 4 holds up, then DietPi can just give the Raspberry Pi 5 a nice little boost, while saving power in the process.

Thanks to [StephanStS] for the tip.

Raspberry Pi Changes HATs

Following on the heels of their Raspberry Pi 5 launch and some specifications for their RP1 all-in-one peripheral chip, the Raspberry Pi folks have now released an update to the HAT peripheral hardware specification reflecting the new model. Called the HAT+, it represents a major step forward with some significant changes.

Most visible will be changes to the mechanical specification, for while the original HAT specification was very rigid this new version is much looser. A HAT+ must only mate with the 40-pin connector, including the ID pins, and line up with only a single mounting hole compared to the four on the original. Electrically, a HAT+ must recognise the standby power state in which the 3.3-volt line is powered down while the 5-volt line remains active, while software-wise, there are changes to the content of the ID EEPROM including the ability to inform about stackable smaller HATs.

Continue reading “Raspberry Pi Changes HATs”

Raspberry Pi 5 Goes Under The X-ray

Most Hackaday readers will know to some extent what lies inside their computer, even if this is only at a block diagram level listing the peripherals. But what is physically on a modern computer board? [Jeff Geerling] has subjected a Raspberry Pi 5 to a medical imager, and shares with us the many layers of parts and PCB he found there. With a six-layer board and a heap of large BGA chips on it, there’s a lot to look at.

For readers who are used to working with printed circuit boards, it’s likely the techniques involved in the design will not be new. For us, the magic lies in the scale. The sheer number of interconnects on the board is impressive enough, but when it becomes possible to peer into the SoC package it becomes evident that there’s an internal PCB with some of the smallest vias we have ever seen. [Jeff] goes on to show us part by part around the board, on the way reminding us that some of the earliest Pi boards had to be reworked to replace Ethernet jacks without magnetics.

There’s a beauty to these ghostly images which might not be apparent to anyone who hasn’t stared obsessively at a PCB in a CAD package while it takes shape. The images show the work of the PCB designer’s art at a fine scale. We’d almost go as far as to suggest they be viewed as fine art instead of industrial design. Take a look, the video is below the break.

If this art is a bit big for you, then look at ASIC design – which takes things down to the microscopic level of the doped silicon structures within these amazing chips.

Continue reading “Raspberry Pi 5 Goes Under The X-ray”

The Raspberry Pi 5 Can Use External Graphics Cards Now

The Raspberry Pi line is full of capable compact computers, but they’ve never been the strongest in the bunch when it comes to graphical output. Nor have they been particularly expandable in that regard. However, that’s all beginning to change, with [Jeff Geerling] reporting success getting external GPUs to work on the Raspberry Pi 5.

Unlike previous Raspberry Pis, the Raspberry Pi 5 has a less quirky implementation for its PCI Express bus. Previous editions have thrown up issues when trying to work with GPUs, but [Jeff] has found much more success this time around. He’s gotten an AMD RX 460 to work with the setup, and has got it running quite a bit of the glmark2 test regime. He’s working on a variety of other AMD cards too, but suspects NVidia parts could be harder due to some initialization issues that are proving difficult to quash.

It still takes some funky adapters and a lot of work, but finally GPUs are starting to work with the platform. Keep up with his list of card trials on the PiPCI website. We’ve seen [Jeff]’s work with earlier iterations of the Raspberry Pi before, too. Video after the break.

Continue reading “The Raspberry Pi 5 Can Use External Graphics Cards Now”

Pineberry Pi HatDrive: Using NVMe SSDs With The Raspberry Pi 5

When the Raspberry Pi 5 launched, many were left chomping at the bit after seeing the PCIe FPC connector alongside the promise that an ‘NVMe SSD HAT would be forthcoming’. Although the official Raspberry Pi NVMe HAT is still a long while off, the Polish company Pineberry Pi is ramping up to release its Top & Bottom versions of its very wittily called HatDrive.

They sent a prototype to [Jeff Geerling], who has been putting his grubby mitts all over them before putting together a video showing off the HatDrive Top, which can accept 2230 and 2242 size NVMe drives.

The primary goal of adding an NVMe drive to the RPi is of course to get rid of those slow and fragile SD cards. Although the SD card standard supports near-NVMe-like speeds with UHS-III, the Raspberry Pi 5 bottoms out at UHS-I, around 100 MB/s. Despite this, using an NVMe drive for booting still takes some work, as [Jeff] lays out in a clear article. Most of this involves tweaking the /boot/config.txt file to enable external PCIe support, editing the onboard EEPROM to change the boot order (in lieu of having a PC-like BIOS screen) and getting the OS image flashed onto the NVMe drive you intend to boot from.

Although things seem to work fine during [Jeff]’s testing, some caveats remain, such as the RPi 5 officially supporting only PCIe Gen 2 x1, with Gen 3 possible, but with potential data integrity issues. There’s also the fundamental limit of having only a single lane of PCIe available. If that’s no problem, then Pineberry Pi offers the aforementioned HatDrive Top for traditional HAT-style mounting, and a Bottom version that can accept up to 2280 format NVMe SSDs. Including the provided ribbon cables, you can order the Top and Bottom for €20 and €25.99 respectively, with the first batch to ship in early December.

Continue reading “Pineberry Pi HatDrive: Using NVMe SSDs With The Raspberry Pi 5”