Close-up of a CPU

Register Renaming: The Art Of Parallel Processing

In the quest for faster computing, modern CPUs have turned to innovative techniques to optimize instruction execution. One such technique, register renaming, is a crucial component that helps us achieve the impressive multi-tasking abilities of modern processors. If you’re keen on hacking or tinkering with how CPUs manage tasks, this is one concept you’ll want to understand. Here’s a breakdown of how it works and you can watch the video, below.

In a nutshell, register renaming allows CPUs to bypass the restrictions imposed by a limited number of registers. Consider a scenario where two operations need to access the same register at once: without renaming, the CPU would be stuck, having to wait for one task to complete before starting another. Enter the renaming trick—registers are reassigned on the fly, so different tasks can use the same logical register but physically reside in different slots. This drastically reduces idle time and boosts parallel tasking. Of course, you also have to ensure that the register you are using has the correct contents at the time you are using it, but there are many ways to solve that problem. The basic technique dates back to some IBM System/360 computers and other high-performance mainframes.

Register renaming isn’t the only way to solve this problem. There’s a lot that goes into a superscalar CPU.

Continue reading “Register Renaming: The Art Of Parallel Processing”

Homebrew Relay Computer Looks Like It Could Be A Commercial Product

You may not have noticed, but we here at Hackaday really love our clicky stuff. Clicky mechanical keyboards, unnecessarily noisy flip-dot displays, and pretty much anything made with a lot of relays — they all grab our attention, in more ways than one. So it’s with no small surprise that we appear to have entirely missed perhaps the clickiest build of all: a fully operational 8-bit computer using nothing but relays.

What’s even more amazing about our failure to find and feature [Paul Law]’s excellent work is that he has been at it for the better part of a decade now. The first post on his very detailed and very well-crafted blog describing the build dates from 2013, when he was just testing LEDs in the arithmetic-logic unit (ALU). Since then, [Paul] has made incredible progress, building module after module, each containing a small portion of the computer’s functionality. The modules plug into card cages with backplanes to connect them, and the whole thing lives in an enclosure made from aluminum extrusion and glossy black panels for a truly sleek look. The computer is incredibly compact for something that uses 400+ DPDT relays to do its thinking.

In addition to the blog, [Paul] has a criminally undersubscribed YouTube channel with a quite recent series going over the computer in depth. We included the overall tour below, but you should really check out the rest of the videos to appreciate how much work went into this build. We’ve seen relay computers ranging in size from single-board to just plain ludicrous, but this one really takes the prize for fit and finish as well as functionality.

Continue reading “Homebrew Relay Computer Looks Like It Could Be A Commercial Product”

Debug Mode Lurking Inside AMD Chips

Looks like some hardware enthusiasts have worked out a method to enable debug mode within AMD processors. The original site isn’t loading for us, but the text has been mirrored in this comment. Getting the chip into debug mode requires access passwords on four control registers. We’ve read through the writeup and it means very little to us but we didn’t pull out a datasheet to help make sense of the registers being manipulated. It shouldn’t be hard to find an old AMD system to try this out on. We’d love to hear about anything you do with this debug system.

[via Slashdot]