Brick-Laying Machine Builds Without Mortar

Move over, 3D printed houses. There’s a new game in town, and it is able to use standard concrete blocks to build the walls of a house in just one day.

Australian company FBR’s Hadrian X is a tablet-controlled system that follows CAD models to lay the blocks one by one. As you can see in the video after the break, the blocks are laid so quickly that there’s no time for mortar, so they dip the bottom of each block in construction adhesive instead. In the second video after the break, you can watch Hadrian-X build a curved wall.

There are several things to consider when it comes to outdoor robots, such as wind and unwanted vibration. In order to correct for these nuisances, FBR came up with Dynamic Stabilisation Technology (DST). While we don’t have a lot of details on DST, the company calls it “a highly accurate system that continuously adjusts the position of a robot’s end effector to ensure it is always held with stability at the correct point in 3D space.”

Curious about printed housing? Here’s the current-ish state of affairs.

Continue reading “Brick-Laying Machine Builds Without Mortar”

Mechanical Scorpion Robot Is A Cute Little Critter

Plenty of robots stick to a pair of driven wheels to keep locomotion simple. If you’re bold though, or just like creepy crawlies, you might instead appreciate this cute scorpion robot build.

Real scorpions have eight legs, but this design has just four legs, which keeps the parts count lower and control much simpler. It still looks a bit like a scorpion, though, by virtue of its cute little tail. It’s not just for show either—it mounts a camera which can be positioned at different angles via the tail’s servos. A Raspberry Pi Zero W is the brains of the operation, and allows the robot to be controlled via WiFi or Bluetooth.

Naturally, there is some additional complexity to the walking design. A full ten servos are used across the multiple legs and tail linkages. Most of the parts are 3D printed, however, so it’s quite easy to build at home once you’ve got all the parts to hand.

The robot critter has a shuffling gait, but we’d love to see it modified to walk and climb in different manners with the right programming and mechanical modifications. We’ve featured some other great creepy crawly builds over the years, too. Video after the break.

Continue reading “Mechanical Scorpion Robot Is A Cute Little Critter”

African man hunched over a small robot car chassis

The Dar Es Salaam Hacker Scene And Gamut Detection

We’re on a sort of vacation in Tanzania at the moment and staying in a modest hotel away from the tourist and government district. It’s a district of small shops selling the same things and guys repairing washing machines out on the sidewalk. The guys repairing washing machines are more than happy to talk. Everybody’s amazingly friendly here, the hotel guy grilled us for an hour about our home state. But I really didn’t expect to end up in a conversation about computer vision.

In search of some yogurt and maybe something cooler to wear, we went on a little walk away from the hotel. With incredible luck we found a robotics shop a few blocks away. Mecktonix is a shop about two meters each way, stuffed full of Arduinos, robots, electronics components, servos, and random computer gear, overseen by [Yohanna “Joe” Harembo]. Nearby is another space with a laser engraver and 3D printer. The tiny space doesn’t stop them from being busy. A constant stream of automotive tech students from the nearby National Institute of Transport shuffle in for advice and parts for class assigned projects.

In between students, Joe demos an autonomous car he’s working on. In classic hacker fashion, he first has to reattach the motor driver board and various sensors, but then he demos the car and its problem –  the video frame rate is very slow. We dive in with him and try to get some profiling using time.monotonic_ns(). He’s never done profiling before, so this is a big eye opener. He’s only processing one video frame every 4.3 seconds, using YOLO on a Pi 3, and yup, that’s the problem.  I suggest he change to gamut detection or a Pi 4. Continue reading “The Dar Es Salaam Hacker Scene And Gamut Detection”

Tim’s Draw Bot Gets Around With A Pen

If you grew up playing with LOGO on an old 8-bit computer, you’re probably familiar with the concept of a drawbot. It’s a simple robot that drags a pen around to draw on paper. [Tim] decided to build one that uses a simple skid-steer design to get around the page. 

An Arduino Nano is the brains of the operation, paired with a CNC Shield that allows it to drive a pair of stepper motors. The stepper motors drive the wheels via cogged belts, with the 3D-printed rims fitted with square rubber drive belts used as tires for additional grip. A third jockey wheel is used for balance, in addition to the two main driven wheels. A servo is used to raise and lower the pen as needed. All the hardware is mounted on to a simple tray chassis, which was 3D printed along with most of the other basic componentry.

The robot does a good job of plotting out a drawing on a small scale, with [Tim] using it to outline his name on paper. We’ve featured some other great drawbots before, too, including this nifty spray-can version. Video after the break.

Continue reading “Tim’s Draw Bot Gets Around With A Pen”

Just When You Think Everything In Robotic Combat Has Been Tried Before…

Since the first combat robots emerged around three decades ago, it seems as though every conceivable configuration has been tried at some point or other. Whether it’s a two-wheeled wedgebot, a walker, a four-wheeled flip-bot, or whatever, someone’s already been there. But how about a self-righting taco with a novel two-wheel drive system? It’s called Taco Tuesday, its team lead [Carter Hurd] has sent us the video below the break, and it’s worth a second look because the technique might find a place outside the arena.

The robot with [Carter] sitting behind it

So what exactly is novel about this bot? It has a single big fat wheel near the front in a longitudinal direction, and a larger slimmer one at the back in a transverse direction. The former wheel propels it around the arena while the latter wheel acts as a rear-wheel steering system, allowing it to pivot round and face an attacker very quickly indeed.

It’s this maneuverability which we think could find an application in other machines, though the same problem they have of sideways friction on that rear wheel would need to be overcome.

The video follows the bot through a BattleBots competition in Las Vegas, and shows us some of the damage they receive in combat. The drive system needs a bit more refinement, but this outing certainly proves it has plenty of potential.

Some of us here at Hackaday have a bit of a soft spot for fighting robots.

Continue reading “Just When You Think Everything In Robotic Combat Has Been Tried Before…”

How Warehouse Robots Actually Work, As Explained By Amazon

Amazon has been using robots to manage and automate their warehouses for years. Here’s a short feature on their current robot, Hercules. This is absolutely Amazon tooting their own horn, but if you have been curious about what exactly such robots do, and how exactly they help a busy warehouse work better, it’s a good summary with some technical details.

Amazon claims to have over 750,000 robots across their network.

The main idea is that goods are stored on four-sided shelves called pods. Hercules can scoot underneath to lift and move these pods a little like a robotic forklift, except much smaller and more nimble. Interestingly, the robots avoid rotating shelves as much as possible and are designed to facilitate this. To change direction, Hercules sets the pod down, turns, then picks the pod back up.

The overall system is centralized, but Hercules itself navigates autonomously thanks to a depth-sensing camera and a grid of navigation markers present on the floor throughout the facility.  Hercules also can wirelessly sense and communicate with nearby human-worn vests and other robots outside its line of sight.

Essentially, instead of human workers walking up and down aisles of shelves to pick products, the product shelves come to the humans. This means the organization and layout of the shelves themselves can be dynamic, higher density, and optimized for efficient robotic access. Shelves do not need to be in fixed rows or aisles, conform to a human-readable categorical layout, nor do they necessarily need walking space between them.

Sometimes robots really are the right tool for the job, and our favorite product-retrieval robot remains [Cliff Stoll]’s crawlspace warehouse bot, a diminutive device made to access boxes of product — in [Cliff]’s case, Klein bottles — stored in an otherwise quite claustrophobic crawlspace.

Micro Robot Disregards Gears, Embraces Explosions

Researchers at Cornell University have developed a tiny, proof of concept robot that moves its four limbs by rapidly igniting a combination of methane and oxygen inside flexible joints.

The device can’t do much more than blow each limb outward with a varying amount of force, but that’s enough to be able to steer and move the little unit. It has enough power to make some very impressive jumps. The ability to navigate even with such limited actuators is reminiscent of hopped-up bristebots.

Electronic control of combustions in the joints allows for up to 100 explosions per second, which is enough force to do useful work. The prototype is only 29 millimeters long and weighs only 1.6 grams, but it can jump up to 56 centimeters and move at almost 17 centimeters per second.

The prototype is tethered, so those numbers don’t include having to carry its own power or fuel supply, but as a proof of concept it’s pretty interesting. Reportedly a downside is that the process is rather noisy, which we suppose isn’t surprising.

Want to see it in action? Watch the video (embedded below) to get an idea of what it’s capable of. More details are available from the research paper, as well.

Continue reading “Micro Robot Disregards Gears, Embraces Explosions”