It’s Numbers All The Way Down With This Tape Measure Number Station Antenna

For all their talk of cooperation and shared interests, the nations of the world put an awful lot of effort into spying on each other. All this espionage is an open secret, of course, but some of their activities are so mysterious that no one will confirm or deny that they’re doing it. We’re talking about numbers stations, the super secret shortwave radio stations that broadcast seemingly random strings of numbers for the purpose of… well, your guess is as good as ours.

If you want to try to figure out what’s going on for yourself, all you need is a pair of tape measures and a software defined radio (SDR), as [Tom Farnell] demonstrates. Tape measure antennas have a long and proud history in amateur radio and shortwave listening, being a long strip of conductive material rolled up in a convenient package. In this case, [Tom] wanted to receive some well-known numbers stations in the 20- to 30-meter band, and decided that a single 15-meter conductor would do the job. Unlike other tape measure antennas we’ve seen, [Tom] just harvested the blades from two 7.5-meter tape measures, connected them end-to-end, and threw the whole thing out the window in sort of a “sloper” configuration. The other end is connected to an RTL-SDR dongle and a smartphone running what appears to be SDRTouch, which lets him tune directly into the numbers stations.

Copying the transmissions is pretty simple, since they transmit either in voice or Morse; the latter can be automatically decoded on a laptop with suitable software. As for what the long strings of numbers mean, that’ll remain a mystery. If they mean anything at all; we like to think this whole thing is an elaborate plan to get other countries to waste time and resources intercepting truly random numbers that encode nothing meaningful. It would serve them right.

Continue reading “It’s Numbers All The Way Down With This Tape Measure Number Station Antenna”

Simple Breadboard SDR For Shortwave

One of the best ways to learn about radios is to build your own, even in the age of cheap SDR dongles. [Aniss Oulhaci] demonstrates this with a simple HF SDR receiver built on a breadboard.

The receiver takes the form of a simplified Tayloe detector. An RF preamp circuit amplifies the signal from a shortwave antenna and feeds it into a 74HC4066D analog switch, which acts as a switching mixer. It mixes the input signal with the local oscillator’s I and Q signals to produce the intermediate frequency signals. The local oscillator consists of a SI5351 clock generator with a 74HC74D flip-flop to generate the I and Q pair. The signals pass through a low pass filter stage and get amplified by an LM358 op amp, resulting in the IQ signal pair being fed to a computer’s stereo sound card.

An Arduino is used to control the SI5351 clock generator, which in turn is controlled by the same program created for the SDR Shield. With the audio signal fed to HDSDR, [Aniss] was able to pick up a shortwave radio broadcaster.

While this is by no means a high-performance receiver, building an SDR on a breadboard is still a great weekend project, with plenty of potential for further experimentation.

Continue reading “Simple Breadboard SDR For Shortwave”

SSB In Your Pocket

In the old days, a shortwave radio was a major desk fixture. These days, you can get truly diminutive radios. However, most of them only have AM capability (that is, no simple way to receive single-sideband or SSB signals)  and — maybe — the ability to pick up FM broadcast.  Small radios also often have no provision for an external antenna which can be crucial for shortwave radios. [Farpoint Farms] shows off the Raddy RF7860 which is a palm-sided radio, but it has the elusive sideband modes and an external antenna port and wire antenna. It even has a rechargeable battery.

Reading the comments, it appears this is a rebadged version of a HanRongDa HRD 747 radio. Of course, there are other smaller radios with sideband reception like the Tecsun PL368, but they aren’t this small.  If you are in the market for a really tiny shortwave radio, this might be the thing for you.

Of course, the question is what you want to listen to on the shortwave bands these days. There are fewer and fewer broadcasters on shortwave, especially those that broadcast to a general audience. However, if there is something you want to hear, pairing this radio with a good portable antenna, would do the job.

Continue reading “SSB In Your Pocket”

Owning A ShortWave Radio Is Once Again A Subversive Activity

An abiding memory for a teen fascinated by electronics and radio in the 1970s and 1980s is the proliferation of propaganda stations that covered the shortwave spectrum. Some of them were slightly surreal such as Albania’s Radio Tirana which would proudly inform 1980s Western Europe that every village in the country now possessed a telephone, but most stations were the more mainstream ideological gladiating of Voice of America and Radio Moscow.

It’s a long-gone era as the Cold War is a distant memory and citizens East and West get their info from the Internet, but perhaps there’s an echo of those times following the invasion of the Ukraine. With most external news agencies thrown out of Russia and their websites blocked, international broadcasters are launching new shortwave services to get the news through. Owning a shortwave radio in Russia may once again be a subversive activity. Let’s build one!

Continue reading “Owning A ShortWave Radio Is Once Again A Subversive Activity”

Rare Radio Receiver Teardown

We’ll admit we haven’t heard of the AGS-38, it reminds us of the shortwave receivers of our youth, and it looks like many that were made “white label” by more established (and often Japanese) companies. [Jeff] found a nice example of this Canadian radio and takes it apart for our viewing pleasure. He also found it was very similar to a Layfayette receiver, also made in Japan, confirming our suspicions.

The radio looks very similar to an Eico of the same era — around the 1960s. With seven tubes, radios like this would soon be replaced by transistorized versions.

Continue reading “Rare Radio Receiver Teardown”

The Russian Woodpecker: Official Bird Of The Cold War Nests In Giant Antenna

On July 4th, 1976, as Americans celebrated the country’s bicentennial with beer and bottle rockets, a strong signal began disrupting shortwave, maritime, aeronautical, and telecommunications signals all over the world. The signal was a rapid 10 Hz tapping that sounded like a woodpecker or a helicopter thup-thupping on the roof. It had a wide bandwidth of 40 kHz and sometimes exceeded 10 MW.

This was during the Cold War, and plenty of people rushed to the conclusion that it was some sort of Soviet mind control scheme or weather control experiment. But amateur radio operators traced the mysterious signal to an over-the-horizon radar antenna near Chernobyl, Ukraine (then part of the USSR) and they named it the Russian Woodpecker. Here’s a clip of the sound.

The frequency-hopping Woodpecker signal was so strong that it made communication impossible on certain channels and could even be heard across telephone lines when conditions were right. Several countries filed official complaints with the USSR through the UN, but there was no stopping the Russian Woodpecker. Russia wouldn’t even own up to the signal’s existence, which has since been traced to an immense antenna structure that is nearly half a mile long and at 490 feet, stands slightly taller than the Great Pyramid at Giza.

This imposing steel structure stands within the irradiated forest near Pripyat, an idyllic town founded in 1970 to house the Chernobyl nuclear plant workers. Pictured above is the transmitter, also known as Duga-1, Chernobyl-2, or Duga-3 depending on who you ask. Located 30 miles northeast of Chernobyl, on old Soviet maps the area is simply labeled Boy Scout Camp. Today, it’s all within the Chernobyl Exclusion Zone.

It was such a secret that the government denied it’s existence, yet was being heard all over the world. What was this mammoth installation used for?

Continue reading “The Russian Woodpecker: Official Bird Of The Cold War Nests In Giant Antenna”

A Superheterodyne Receiver With A 74xx Twist

In a world with software-defined radios and single-chip receivers, a superheterodyne shortwave radio might not exactly score high on the pizzazz scale. After all, people have been mixing, filtering, and demodulating RF signals for more than a century now, and the circuits that do the job best are pretty well characterized. But building the same receiver using none of the traditional superhet trappings? Now that’s something new.

In what [Micha] half-jokingly calls a “74xx-Defined Radio”, easily obtained discrete logic chips, along with some op-amps and a handful of simple components, take the place of the tuned LC circuits and ganged variable capacitors that grace a typical superhet receiver. [Micha] started by building an RF mixer out of a 74HC4051 analog multiplexer, which with the help of a 2N3904 phase splitter forms a switching mixer. The local oscillator relies on the voltage-controlled oscillator (VCO) in a 74HC4046 PLL, a chip that we’ve seen before in [Elliot Williams]’ excellent “Logic Noise” series. The IF filter is a simple op-amp bandpass filter; the demodulator features an op-amp too, set up as an active half-wave rectifier. No coils to wind, no capacitors to tune, no diodes with mysterious properties — and judging by the video below, it works pretty well.

It may not be the most conventional way to tune in the shortwave bands, but we always love the results of projects that are artificially constrained like this one. Hats off to [Micha] for the interesting trip down the design road less travelled.

Continue reading “A Superheterodyne Receiver With A 74xx Twist”