Two colored plastic films are loosely tied over the entrances to two plastic containers.

Cooking Up Plastics In The Kitchen

The earliest useful plastics were made out of natural materials like cellulose and casein, but since the Bakelite revolution, their use has dwindled away and left them mostly as curiosities and children’s science experiments. Fortunately, though, the raw materials for bioplastics are readily available in most grocery stores, and as [Ben] from NightHawkInLight demonstrates, it’s still possible to find new uses for them.

His first recipe was for a clear gelatine thermoplastic, using honey as a plasticizer, which he formed into the clear packet around some instant noodles: simply throw the whole packet into hot water, and the plastic dissolves away. With some help from the home bioplastics investigator [Giestas], [Ben] next created a starch-based plastic out of starch, vinegar, and glycerine. Starch is a good infrared emitter in the atmospheric window, and researchers have made a starch-plastic aerogel that radiates enough heat to become cooler than its surroundings. Unfortunately, this requires freeze-drying, and while encouraging freezer burn in a normal freezer can have the same effect, it’ll take a few months to get a usable quantity of the material.

The other problem with starch-based plastics is their tendency to absorb water, at least when paired with plasticizers like glycerine or honey. Bioplastics based on alginate, however, are easy to make waterproof. A solution of sodium alginate, derived from seaweed, reacts with calcium ions to make a cross-linked waterproof film. Unfortunately, the film forms so quickly that it separates the solutions of calcium ions from the alginate, and the reaction stops. To get around this, [Ben] mixed a sodium alginate solution with powdered calcium carbonate, which is insoluble and therefore won’t react. To make the plastic set, he added glucono delta lactone, which slowly breaks down in water to release gluconic acid, which dissolves the calcium carbonate and lets the reaction proceed.

The soluble noodle package reminded us of a similar edible package, which included flavoring in the plastic. We’ve also seen alginate used to make conductive string, and rice used to make 3D printer filament. It’s worth some caution, though – not all biologically-derived plastics are healthier than synthetic materials.

Continue reading “Cooking Up Plastics In The Kitchen”

Mouse Model Suggests Starch-Based Plastics Are Still Bad For You

To paraphrase The Simpsons: plastics are the solution to – and cause of – all of mankind’s problems. Nowhere is this more clear in the phenomenon of microplastics. Some have suggested that alternative bioplastics made out of starch could be the solution here, as the body might be able to digest and disassemble these plastic fragments better. Unfortunately, a team of Chinese researchers put this to the test using mice, with the results suggesting that starch-based plastics do not change the harm to tissues and organs.

We previously looked at this harm from micro- and nanoplastics (MNP), with humans and their brains at autopsy showing a strong correlation between disease and presence of MNPs. In this recent study mice were split up into three groups, for either no, low or high levels of these bioplastics in their food. At autopsy, the mice exposed to the bioplastics all showed damage to organs, including the same gene-regulation issues and inflammation markers as seen with other plastics.

Despite these results, researchers question how useful these results are, as they pertain to modified starches with known biodegradability issues, while starch by itself is absolutely digestible when it’s in the form of potato chips, for instance. Perhaps the trick here is to make bioplastics that are still useful as plastics, and yet as harmless to ingest as said potato chips.

Not that we recommend eating bioplastics, mind you; potato chips are definitely tastier.

DIY Chemistry Points The Way To Open Source Blood Glucose Testing

Every diabetic knows that one of the major burdens of the disease is managing supplies. From insulin to alcohol wipes, diabetes is a resource-intensive disease, and running out of anything has the potential for disaster. This is especially true for glucose test trips, the little electrochemical dongles that plug into a meter and read the amount of glucose in a single drop of blood.

As you might expect, glucose test strips are highly proprietary, tightly regulated, and very expensive. But the chemistry that makes them work is pretty simple, which led [Markus Bindhammer] to these experiments with open source glucose testing. It’s all part of a larger effort at developing an open Arduino glucometer, a project that has been going on since 2016 but stalled in part thanks to supply chain difficulties on the chemistry side, mainly in procuring glucose oxidase, an enzyme that oxidizes glucose. The reaction creates hydrogen peroxide, which can be measured to determine the amount of glucose present.

With glucose oxidase once again readily available — from bakery and wine-making suppliers — [Markus] started playing with the chemistry. The first reaction in the video below demonstrates how iodine and starch can be used as a reagent to detect peroxide. A tiny drop of glucose solution turns the iodine-starch suspension a deep blue color in the presence of glucose oxidase.

While lovely, colorimetric reactions such as these aren’t optimal for analyzing blood, so reaction number two uses electrochemistry to detect glucose. Platinum electrodes are bathed in a solution of glucose oxidase and connected to a multimeter. When glucose is added to the solution, the peroxide produced lowers the resistance across the electrodes. This is essentially what’s going on in commercial glucose test strips, as well as in continuous glucose monitors.

Hats off to [Markus] for working so diligently on this project. We’re keenly interested in this project, and we’ll be following developments closely. Continue reading “DIY Chemistry Points The Way To Open Source Blood Glucose Testing”