Hackaday Links: Sunday, June 30th, 2013

hackaday-links-chain

The race is on to squeeze cycles out of an 8MHz AVR chip in order to better drive the WS2811 LED protocol.

[Asher] doesn’t want to buy charcoal aquarium filters if he can just build them himself. He filled a couple of plastic drink bottles with charcoal, cut slots in the sides, and hooked them up to his pump system. A gallery of his work is available after the break.

Is the best way to make microscopic sized batteries to 3d print them? Harvard researchers think so. [Thanks Jonathan and Itay]

The Ouya gaming console is now available for the general public. [Hunter Davis] reports that the Retrode works with Ouya out-of-the-box. If you don’t remember hearing about it, Retrode reads your original cartridge ROMs for use with emulators.

Making a cluster computer out of 300 Raspberry Pi boards sounds like a nightmare. Organization is the key to this project.

Hackaday alum [Jeremy Cook] is working on an animatronic cigar box. Here he’s demonstrating it’s ability to listen for voice commands.

A Kelvin clips is a type of crocodile clip that has the two jaws insulated from each other. [Kaushlesh] came up with a way to turn them into tweezer probes.

[Read more...]

Air-powered gripper design makes them easy to produce

air-powered-gripper

This invertebrate gripper uses air pressure to grab onto objects. The secret is all in the design. But you don’t have to reinvent the wheel. If you’ve got a 3D printer you can follow this guide to make your own.

The gripper is made of silicone. The trick is in designing an inner structure that deforms in one direction when pressurized. To make one or one hundred, simply download the design files and 3D print a mold. The process from there is much like the silicone band prototyping process we looked at back in March. The two-part silicone is mixed and poured in the mold. You also need to pour some on a flat surface. We were under the impression that uncured silicone would not stick to cured silicone but we were wrong. The two parts are glued together with a fresh batch of the mix. After everything has set up you can pierce the bladder with a hose in order to inject air.

Below you can see the star-shaped version being tested. There’s also a Harvard research video which shows a similar design lifting an egg.

[Read more...]

Retrotechtacular: Bell Labs introduces a thing called ‘UNIX’

dennis

Modern operating systems may seem baroque in their complexity, but nearly every one of them  - except for Windows, natch – are based on the idea of simplicity and modularity. This is the lesson that UNIX taught us, explained perfectly in a little film from Bell Labs in 1982 starring giants of computation, [Dennis Ritchie], [Ken Thompson], [Brian Kernighan], and others.

At the time this film was made, UNIX had been around for about 10 years. In that time, it had moved far from an OS cloistered in giant mainframes attached to teletypes to slightly smaller minicomputers wired up to video terminals. Yes, smallish computers like the Apple II and the VIC-20 were around by this time, but they were toys compared to the hulking racks inside Bell Labs.

The film explains the core concept of UNIX by demonstrating modularity with a great example by [Brian Kernighan]. He took a short passage from a paper he wrote and found spelling errors by piping his paper though different commands from the shell. First the words in the paper were separated line by line, made lowercase, and sorted alphabetically. All the unique words were extracted from this list, and compared to a dictionary. A spell checker in one line of code, brought to you by the power of UNIX.

Google Science Fair finalist explains squid-inspired underwater propulsion

google-sciencefair-finalist-squid-propulsion

Meet [Alex Spiride]. He’s one of the fifteen finalists of the 2013 Google Science Fair. A native of Plano, Texas, [Alex] entered his squid-inspired underwater propulsion system in the 13-14 year old category.

The red cylinder shown in the image inlay is his test rig. It is covered well on his project site linked above. You just need to click around the different pages using the navigation tiles in the upper right to get the whole picture. The propulsion module uses water sprayed out the nozzle to push the enclosure forward. The hull is made of PVC, with a bladder inside which is connected to the nozzle. The bladder is full of water, but the cavity between it and the hull is full of air. Notice the plastic hose which is used to inject pressurized air, squeezing the bladder to propel the water out the nozzle. Pretty neat huh?

We think [Alex's] work stands on its own. But we can’t help thinking what the next iteration could look like. We wonder what would happen if you wrapped that bladder in muscle wire? Would it be strong enough to squeeze the bladder?

You can see all fifteen finalists at the GSF announcement page. Just don’t be surprised if you see some of those other projects on our front page in the coming days.

[Read more...]

Easily 3D print mesh screens

easy-way-to-3d-print-mesh-screens

If you need a way to make openings in your project enclosures look nice just head on over to the 3D printer. In the image above [Alfred] is showing off the result of his Slic3r hack for printing mesh grills.

It’s important to note that you need to make sure you’re using Slic3r version 0.9.8. This won’t work with newer versions because starting with 0.9.9 the software will add a raft to the bottom of your design.

The grill can be in any shape you desire. It starts by modelling this outline, then extruding the edges downward the same distance as your desired mesh thickness. After importing the design file into Slic3r [Alfred] uses the support material settings to choose this honeycomb design. He then sets the fill density to zero. This means the design will not be printed at all, only the fill material, resulting in these honeycomb screens.

Slic3r’s a fantastic piece of software. Check out this interview with Slic3r’s lead developer.

Build a light following bristlebot as a way to teach science

light-following-bristlebot

[Ben Finio] designed this project as a way to get kids interested in learning about science and engineering. Is it bad that we just want to build one of our own? It’s a light following bristlebot which in itself is quite simple to build and understand. We think the platform has a lot of potential for leading to other things, like learning about microcontrollers and wireless modules to give it wireless control.

Right now it’s basically two bristlebots combined into one package. The screen capture seen above makes it hard to pick out the two toothbrush heads on either side of a battery pack. The chassis of the build is a blue mini-breadboard. The circuit that makes it follow light is the definition of simple. [Ben] uses two MOSFETs to control two vibration motors mounted on the rear corners of the chassis. The gate of each MOSFET is driven by a voltage divider which includes a photoresistor. When light on one is brighter than the other it causes the bot to turn towards to the brighter sensor. When viewing the project log above make sure to click on the tabs to see all of the available info.

This directional control seems quite good. We’ve also seen other versions which shift the weight of the bot to change direction.

[Read more...]

Car stereo AUX input taps into CD ribbon cable

RadioAuxInput-banner

[Gezepi] wanted to add an auxiliary input to the stereo in his 1994 Camry. At first look there wasn’t an easy way to patch into the system. But a bit of probing with an oscilloscope and figured out that he could inject audio through the CD ribbon cable shown above. The CD reader is a self-contained unit that receives commands through the cable, and passes analog stereo audio back to the receiver portion of the head unit. We’re not sure how he figured out which pins to tap into, but it may have been as easy as probing with some headphones while a CD is playing.

The extent of his hack is documented in the image below. He cut the two audio leads on the CD side of the ribbon cable, then soldered his auxiliary jack on the receiver side of the cable connector. This ensures that two audio signals aren’t being piped into the receiver at the same time. Unfortunately it also means that he won’t be able to use the CD player. We have seen other methods that use a special audio jack as a pass-through which cuts the connection when a jack is inserted. That’s the method used in this Subaru hack.

[Read more...]