The MUSE Permanent Magnet Stellarator: Fusion Reactor With Off-The-Shelf Parts

(a) The 12 permanent magnet holder subsegments. (b) The 16 planar, circular toroidal field coils are positioned inside the water-jet cut support structure. (c) The glass vacuum vessel is joined by 3D-printed low-thickness couplers. Glass ports were hot welded to the torus. (Credit: T.M. Qian et al., 2023)
(a) The 12 permanent magnet holder subsegments. (b) The 16 planar, circular toroidal field coils are positioned inside the water-jet cut support structure. (c) The glass vacuum vessel is joined by 3D-printed low-thickness couplers. Glass ports were hot welded to the torus. (Credit: T.M. Qian et al., 2023)

When you think of a fusion reactor like a tokamak or stellarator, you are likely to think of expensive projects requiring expensive electromagnets made out of exotic alloys, whether superconducting or not. The MUSE stellarator is an interesting study in how to take things completely in the opposite direction. Its design and construction is described in a 2023 paper by [T.M. Qian] and colleagues in the Journal of Plasma Physics. The theory is detailed in a 2020 Physical Review Letters paper by [P. Helander] and colleagues. As the head of the Stellarator Theory at the Max Planck Institute, [P. Helander] is well-acquainted with the world’s most advanced stellarator: Wendelstein 7-X.

As noted in the paper by [P. Helander] et al., the use of permanent magnets can substantially simplify the magnetic-field coils of a stellarator, which are then primarily used for the toroidal magnetic flux. This simplification is reflected in the design of MUSE, as it only has a limited number of identical toroidal field coils, with the vacuum vessel surrounded by 3D printed structures that have permanent magnets embedded in them. These magnets follow a pattern that helps to shape the plasma inside the vacuum vessel, while not requiring a power supply or (at least theoretically) cooling.

Naturally, as noted by [P. Helander] et al, a limitation of permanent magnets is their limited field strength, inability to be tuned, and demagnetization at high temperatures. This may limit the number of practical applications of this approach, but researchers at Princeton Plasma Physics Laboratory (PPPL) recently announced in a self-congratulatory article that they will  ‘soon’ commence actual plasma experiments with MUSE. The lack of (cooled) divertors will of course limit the experiments that MUSE can be used for.

Japan’s JT-60SA Generates First Plasma As World’s Largest Superconducting Tokamak Fusion Reactor

Comparison of toroidal field (TF) coils from JET, JT-60SA and ITER (Credit: QST)
Comparison of toroidal field (TF) coils from JET, JT-60SA and ITER (Credit: QST)

Japan’s JT-60SA fusion reactor project announced first plasma in October of this year to denote the successful upgrades to what is now the world’s largest operational, superconducting tokamak fusion reactor. First designed in the 1970s as Japan’s Breakeven Plasma Test Facility, the JT-60SA tokamak-based fusion reactor is the latest upgrade to the original JT-60 design, following two earlier upgrades (-A and -U) over its decades-long career. The most recent upgrade matches the Super Advanced meaning of the new name, as the new goal of the project is to investigate advanced components of the global ITER nuclear fusion project.

Originally the JT-60SA upgrade with superconducting coils was supposed to last from 2013 to 2020, with first plasma that same year. During commissioning in 2021, a short circuit in the poloidal field coils caused a lengthy investigation and repair, which was completed earlier this year. Although the JT-60SA is only using hydrogen and later deuterium as its fuel rather than the deuterium-tritium (D-T) mixture of ITER, it nevertheless has a range of research objectives that allow for researchers to study many aspects of the ITER fusion reactor while the latter is still under construction.

Since the JT-60SA also has cooled divertors, it can sustain plasma for up to 100 seconds, to study various field configurations and the effect this has on plasma stability, along with a range of other parameters. Along with UK’s JET, China’s HL-2M and a range of other tokamaks at other facilities around the world, this should provide future ITER operators with significant know-how and experience long before that tokamak will generate its first plasma.

China’s Fusion Reactor Hits Milestone

An experimental fusion reactor built by the Chinese Academy of Science has hit a major milestone. The Experimental Advanced Superconducting Tokamak (EAST) has maintained a plasma pulse for a record 102 seconds at a temperature of 50 million degrees – three times hotter than the core of the sun.

The EAST is a tokamak, or a torus that uses superconducting magnets to compress plasma into a thin ribbon where atoms will fuse and energy will be created. For the last fifty years, most research has been dedicated to the study of tokamaks in producing fusion power, but recently several projects have challenged this idea. The Wendelstein 7-X  stellarator at the Max Planck Institute for Plasma Physics recently saw first plasma and if results go as expected, the stellarator will be the design used in fusion power plants. Tokamaks have shortcomings; they can only be ‘pulsed’, not used continuously, and we haven’t been building tokamaks large enough to produce a net gain in power, anyway.

Other tokamaks currently in development include ITER in France. Theoretically, ITER is large enough to attain a net gain in power at 12.4 meters in diameter. EAST is much smaller, with a diameter of just 3.7 meters. It is impossible for EAST to ever produce a net gain in power, but innovations in the design that include superconducting toroidal and poloidal magnets will surely provide insight into unsolved questions in fusion reactor design.

Fusion Reactor Wins Science Fairs

[Will Jack] built a heavy water fusion reactor and then won district and regional science fair projects with it. Someone give this man a job!

We looked in on his fusion reactor about a year ago. At the time he had managed to build a magnetic containment field but didn’t have the voltages or the deuterium necessary to achieve fusion. We’ll that’s all changed. Using a boron-10 lined sensor tube he’s managed to detect the rise in neutron counts that would indicate fusion. Remarkable. He’s now working on a refined gas system that will allow him to increase the deuterium purity by cutting down on the leak rate. He mentions a few other hardware improvements such as a new containment unit and an ion source upgrade. Both of these concepts go beyond our knowledge so do make sure to put on your Nuclear Engineering hat while reading through his project update.

Build A Fusion Reactor In Your Home

At first we were pretty skeptical of this home made fusion reactor instructable. However, we’ve seen home made fusion reactors before, so it is technically possible, we guess. The construction alone is interesting enough to warrant a few moments of looking.

We’re not experts, so pardon us if we can’t tell you exactly what is going on, but we can appreciate the craftsmanship involved with the build. The vacuum chamber specifically is quite nice.

We know that some of our commenters probably have more experience here. Tell us, does this thing look legit?

Basement Fusion Reactor

Do you ever wonder what projects your neighbors have going on in their basements? [Will Jack’s] neighbors might be surprised to find he’s building a fusion reactor. The first step toward completing a Farsworth-Hirsch Fusor is up and running. The picture above shows heated plasma contained in a magnetic field. Next he just needs to up the voltage and inject some deuterium.

Yeah right! Deuterium, aka heavy water, is extremely rare and very difficult to refine. If you’re not familiar with the substance, you should get your hands on the NOVA episode: Hitler’s Sunken Secrets.

We’re glad to see that [Will Jack] is donning a lead vest for protections.  [Will O’Brien] cautioned us about the stray X-rays these things produce when he covered fusors back in 2007.

Make Your Own Fusion Reactor


It’s staring to feel like a theme week. [Eric] reminded me of this 17 year old who built his own fusion reactor. Being me, I had to look around for more. I found the open source fusor research consortium. I found plans, research, and this fusor built by Richard Hull. It’s his fourth version – definitely worth checking out. Essentially, all the atmospheric air is removed via vacuum. Then you add a bit of deuterium gas, some high voltage and if you got it right, bask in the glow of your own personal fusion reaction. (Just watch out for X-ray leaks.)