Wio Terminal Makes Passable Oscilloscope

There was a time when getting a good oscilloscope not only involved a large outlay of capital, but also required substantial real estate on a workbench. The situation has improved considerably for the hobbyist, but a “real” scope can still cost more than what a beginner is looking to spend. Luckily, plenty of modern microcontrollers are capable of acting as a basic oscilloscope in a pinch, provided there’s a display available to interface with it. Combined with the right software, the Wio Terminal looks like a promising option.

The Wio Terminal is a platform gaining some popularity due to its fairly capable SAMD51 microcontroller and also its integration with a display and a number of input buttons. On the hardware side, [mircemk] mounted the Terminal in a convenient vertical orientation and broke out a pair of connectors for the inputs.

But it’s the software that really makes this project work. [Play With Microcontroller] originally developed the firmware for the PIC24 back in 2017, but ported the code over to the Wio Terminal a couple years back. Noting that the microcontroller is not particularly fast, the project doesn’t exactly match the specifications or capabilities of a commercial unit. But still, it does an impressive job of recreating the experience of using a modern digital scope

The Wio Terminal is a device we’ve seen around here for a few unique projects, among them a device for preventing repetitive strain injuries while using a computer mouse and another that is a guide for game development in MicroPython. And if you’re just itching to port oscilloscope software to accessible but under-powered microcontrollers, be sure to check out [mircemk]’s other oscilloscope projects like this one built around the STM32 microcontroller.

Continue reading “Wio Terminal Makes Passable Oscilloscope”

Japan’s JT-60SA Generates First Plasma As World’s Largest Superconducting Tokamak Fusion Reactor

Comparison of toroidal field (TF) coils from JET, JT-60SA and ITER (Credit: QST)
Comparison of toroidal field (TF) coils from JET, JT-60SA and ITER (Credit: QST)

Japan’s JT-60SA fusion reactor project announced first plasma in October of this year to denote the successful upgrades to what is now the world’s largest operational, superconducting tokamak fusion reactor. First designed in the 1970s as Japan’s Breakeven Plasma Test Facility, the JT-60SA tokamak-based fusion reactor is the latest upgrade to the original JT-60 design, following two earlier upgrades (-A and -U) over its decades-long career. The most recent upgrade matches the Super Advanced meaning of the new name, as the new goal of the project is to investigate advanced components of the global ITER nuclear fusion project.

Originally the JT-60SA upgrade with superconducting coils was supposed to last from 2013 to 2020, with first plasma that same year. During commissioning in 2021, a short circuit in the poloidal field coils caused a lengthy investigation and repair, which was completed earlier this year. Although the JT-60SA is only using hydrogen and later deuterium as its fuel rather than the deuterium-tritium (D-T) mixture of ITER, it nevertheless has a range of research objectives that allow for researchers to study many aspects of the ITER fusion reactor while the latter is still under construction.

Since the JT-60SA also has cooled divertors, it can sustain plasma for up to 100 seconds, to study various field configurations and the effect this has on plasma stability, along with a range of other parameters. Along with UK’s JET, China’s HL-2M and a range of other tokamaks at other facilities around the world, this should provide future ITER operators with significant know-how and experience long before that tokamak will generate its first plasma.

An image of the inside of a vehicle wheel. An outer ring gear is attached to two articulated sets of three small helical gears attached to a central sun gear. A shaft from the right side enters into the sun gear.

A Revolution In Vehicle Drivetrains?

Power delivery in passenger vehicle drivetrains hasn’t changed much since the introduction of the constant velocity (CV) joint in the 1930s. Most electric vehicles still deliver power via the same system used by internal combustion cars. Hyundai/Kia has now revealed a system they think will provide a new paradigm with their Universal Wheel Drive System (Uni Wheel). [via Electrek]

What appears at first to be a hub motor is in fact a geared wheel that keeps the motor close without the problem of high unsprung weight. Power is fed into a sun gear which can move independently of the wheel allowing the system to maintain a more consistent driveline and avoid power variability over the range of suspension travel like you’d find in a CV joint experiencing high deflection.

We have some concerns about the durability of such a system when compared with the KISS and long development history of CV joints, but we can’t deny that moving the motors of an electric vehicle out to the corners would allow more packaging flexibility for the cargo and passenger areas. We’re also excited to see open source replicas make their way into smaller robotics projects now that the images have been released. If you’ve already made one in CAD, send us a tip at tips@hackaday.com.

Looking for more interesting innovations in electric cars? How about an off-grid camper van? If you think automakers are overcomplicating something that should be simple, read the Minimal Motoring Manifesto.

Continue reading “A Revolution In Vehicle Drivetrains?”

A Fully-Transparent Air Bubble Display

We all have good intentions when starting a new project, but then again, we all know where those lead. Such is the case with [RealCorebb]’s BBAir project, a completely transparent air bubble display. Although the plan was to spend about three months on it, the months slowly added up to a full year of tinkering.

It all started when [RealCorebb] made a subscriber counter using Minecraft campfire smoke to display the digits. Someone suggested using air to implement the next iteration, and for [RealCorebb], it was challenge accepted. After considering a syringe for each channel, a separate pump, or one pump and many solenoids, [RealCorebb] settled on solenoids to push air, and designed a PCB to reduce the amount of wire spaghetti.

Once [RealCorebb] created an acrylic enclosure and wired everything up, it was time to test it out. Everything worked, except that air was leaking from somewhere, which turned out to be the way the solenoids were installed. Then, of course, it was time to don sunglasses and write the code. We still don’t know if [RealCorebb] settled on water, glycerine, or silicone oil, but the end result is quite nice, and we’re betting on glycerine. Be sure to check out the build video after the break, which has English subtitles.

Although we’ve seen our share of bubble displays before, we often discuss bubble LEDs displays like this one.

Continue reading “A Fully-Transparent Air Bubble Display”

Anthrobots can promote gap closures on scratched live neuronal monolayers. (Credit: Gumuskaya et al., 2023)

Anthrobots: Tiny Robots From Tracheal Epithelium Cells That Can Fix Neural Damage

Although we often regard our own bodies and those of the other multicellular organisms around us as a singular entity, each cell that makes up our body is its own, nano-robot. One long-existing question was whether these cells can be used for other tasks — like biological robots — after they have specialized into a specific tissue type, with a recent study by [Gizem Gumuskaya] and colleagues in Advanced Science (with Nature news coverage) indicating a potential intriguing use of adult human epithelial cells recovered from the trachea.

Human bronchial epithelial cells self-construct into multicellular motile living architectures. (Credit: Gumuskaya et al., 2023)
Human bronchial epithelial cells self-construct into multicellular motile living architectures. (Credit: Gumuskaya et al., 2023)

After extraction, these adult cells were kept in an extracellular matrix (ECM, Matrigel) in conditions promoting cell division, followed by ECM dissolution after 14 days and subsequent culturing of the spherical clumps of cells that had thus formed in a water-based, low-viscosity environment. This environment, along with the addition of retinoic acid promoted the development of outward-facing cilia, rather than the typical inward type with a gel-based ECM.

These spheroids (anthrobots, referencing their human origin) generally showed the ability to move using these cilia, with the direction largely determined by the symmetry of the sphere. Multiple of these motile spheroids were then placed on a layer of human neural tissue, in which a scratch had damaged a number of the neurons to form a gap. The anthrobots grouped together over the course of days to form a bridge across the gap, with the neural tissue observed to regrow underneath this bridge, a behavior that could not be repeated by using a dummy support consisting out of agarose on another neural sample, indicating that it is this living bridge that enabled neural regeneration.

Although the researchers rightfully indicate that they are uncertain which factors actually induce this restorative effect in the neurons, it offers exciting glimpses into a potential feature where neural damage is easily repaired, and biological robots made from our own cells can be assembled to perform a variety of tasks.

When Nearly Flat Isn’t Really Flat

An aerial photo of the UK city of Milton Keynes
Is Mk really flat? Thomas Nugent, CC BY-SA 2.0.

From where I am sitting, the earth is flat. The floor that runs the length of the unit my hackerspace sits in is flat, the concrete apron behind it on which we test our Hacky Racers is flat, and a few undulations in terrain notwithstanding, it remains flat as I walk up the road towards Stony Stratford.

Of course, Hackaday hasn’t lost its mind and joined the conspiracy theorists, the earth is definitely spherical as has been known and proved multiple times since antiquity. But my trivial observation made in a damp part of Buckinghamshire still holds; that for a given value of flat which disregards a few lumps and bumps in the ground, my corner of the English city of Milton Keynes is pretty flat. Which leads from a philosophical discussion to an engineering one, if I can reasonably describe a city-sized area on an Earth-sized sphere as flat, how flat does a surface have to be to be considered flat? And from that stems a fascinating story of the evolution of precision machining. Continue reading “When Nearly Flat Isn’t Really Flat”

Operate Your Own Nuclear Reactor, Virtually

If you’ve ever wanted to operate your own nuclear reactor, you probably aren’t going to get one in your backyard shop. However, thanks to the University of Manchester, you can get a simulated one in your browser. The pressurized water reactor looks realistic and gives you controls that — we are fairly sure — are greatly simplified compared to the real thing.

We suggest you start with the tour before you start unless, you know, you’ve operated a reactor before. You have to balance the control rods, the coolant pumping, and the steam output to produce as much power as possible without melting the core.

If the reactor were real, the pressure vessel would weigh as much as two 747 jets! Despite the high-tech, the business end is a conventional steam generator. The only difference is that the steam is made by the heat of the nuclear reaction instead of by burning coal or gas.

To operate the reactor, you’ll turn on the coolant pumps and wait for the high-pressure liquid to reach 290 C. In real life, this takes about 8 hours, but lucky for us, the simulation is sped up. Once you reach the right temperature, you can lift the control rods to start generating heat. This will let you adjust the steam output to try to match the demand at any given time. But if you go out of bounds, the reactor will helpfully shut down. Of course, that doesn’t help your score.

We don’t know how realistic it is, but we do know Homer Simpson probably has fewer shutdowns than we do. There are different types of reactors, of course. Operating them may be difficult, but creating fuel for them is no simple task, either. Just maybe put out your candles before you start playing.