Hacked Interactive R2D2 controlled by Raspberry Pi

hacked-R2D2-controlled-by-raspberry-pi

Ah R2D2. Probably one of the most recognized little robots on the planet. There have to be a hundred different toys of R2 out there, but one of the more impressive is the 30th Anniversary Interactive edition. Complete with all kinds of bells and whistles, it’s about as realistic as they come. One Star Wars fan found himself in possession of a broken Interactive R2, and with his girlfriend’s birthday coming up, decided to do a little droid surgery to create the ultimate gift.

Giving Anakin a run for his money, all the controls for this R2 unit were custom built.  A Raspberry Pi running Rasbian acts as the brain. Facial recognition was implemented using OpenCV. Voice commands in either English or Chinese were made possible by PocketSphinx. Some of the other features he included are: message recording and playback, ultrasonic distance detection, motion detection, wifi, and a rechargeable battery. Many of those features were included in the original toy, but since this unit was broken, had to be rebuilt from scratch.

In the end, it must have impressed his girlfriend – she’s now his wife. Good work Jedi. Check out some build photos and a video demonstration after the break.

[Read more...]

Gamma-ray scintillation probe in a paint can

gamma.ray.scintillation.probe.in.paint.can

The [Prutchi] family sounds pretty cool. [David], the father, is a well educated engineer, has 70 patents, and has written two books. On his off time, he has a passion for making experimental physics accessible to the average Joe. His daughter [Shanni] is a high school student who co-authored one of those same books, and helps conduct research in the fields of Radio-Astronomy and Quantum Physics. Together, they came up with an affordable, yet very sensitive, gamma-ray scintillation probe for their customized Civil Defense V-700 radiation survey meter. Sweet.

They decided to use parts that were low cost and readily available so others could easily follow in their footsteps. A Philips XP5312/SN photomultiplier tube (PMT) and scintillation plastic are the main components.  The enclosure for the probe is a standard paint can, lined with polyurethane foam inserts to help protect the assembly and hold everything in place.

[David] says that since the probe is very portable and has a high level of sensitivity, it is an ideal candidate for radioactive mineral surveying and scouting miscellaneous gamma-ray sources. They documented the whole process and have compiled a handy PDF file for those who are interested in creating their own.

DIY PC to telescope interface cable

diy.pc.to.telescope.interface.cable

If you’re serious about astronomy these days, you want to have a computer controlled telescope. Although you can easily purchase a pre-made cable that connects the two devices, where’s the fun in that? [Charles], being an avid Maker, has created a nice step by step guide so you can build your own.

This is a great weekend project, and one that even a novice electronics hobbyist should be able to tackle. It’s straight forward, rather quick, and very easy. Strip some insulation off both ends of the cable, then cut off the unneeded wires. (You’ll only be working with three of them.) Prep everything with heat shrink tubing. Crimp one end of the wires into an RJ10 plug, then solder the other end of the wires into a DB9 connector. Secure the heat shrink tubing in place, attach the housings, and you can call it finished!

[Charles] said the whole procedure only took him around 15 minutes. Total cost? Less than $17 in parts.

Words of wisdom from a maker entrepreneur

words-of-wisdom-from-a-maker-entrepreneur

Have an awesome invention that you want to create and sell to the world? Think you have everything all planned out and you’re ready to just let the money flow in? Maybe not. Take a few moments and read [Jonathan]‘s first hand experience of a maker start up business that didn’t go anything like he had planned.

[Jonathan] thought he was ready. He had created a unique product and, by taking pre-orders, didn’t have to front any of his own capital. He had shown that there was demand for such a device. The big problem…supply. Selling things was the easy part. Actually making them was another story. Every step of the way had complications. Printing errors, parts suppliers backed out, an international money transfer didn’t go through, postage rates increased, suppliers sent the wrong parts, and he and his wife had a baby. His stress levels were through the roof knowing that his customers had prepaid and were waiting through all the delays.

In the end, [Jonathan] learned a lot and survived the journey. He is currently working on his next invention. If you’d like to learn more about his experiences, you can message him personally.  There’s also a Pianocade features video after the break.

[via Adafruit]

[Read more...]

Futaba 10C radio modified for Spektrum module compatibility

futaba-radio-modified-to-fly-spektrum

The Futaba 10C radio (non-module version) is [Tom]‘s transmitter of choice. Unfortunately,  it isn’t compatible with the Spektrum DSM2 technology modules he wanted to use. So, being the crafty guy he is, he decided to hack it so it was.

Upon opening the Futaba transmitter, he realized that the non-module version of the 10C didn’t really seem that different than a module version. His transmitter just has a pcb hardwired in place where the modules would otherwise go. He soldered a 4 conductor audio jack to the unused pins on the pcb in the transmitter, then mounted it in the case with some J.B. Weld. He then wired and mounted the receiving jack in the module case. A small 6 inch audio cable bridges the two devices, and velcro holds them neatly together.

He discovered that certain modules have problems with the channels being out of order. Unless someone comes up with a firmware hack, there’s no way to remap the controls. So, some modules are just not compatible. [Tom] gives a very nice video walkthrough after the break. Check it out.

[Read more...]

Hackaday Links: March 20th, 2013

Giant fresnel lens is dangerous fun

giant-fresnel-lens-is-dangerous-fun

Here’s an interesting, and rather dangerous, use for those old big screen TVs that are frequently listed for FREE on Craigslist. With the lens from the old TV built into an adjustable wooden frame, [Grant] was able to melt a stack of pennies, instantly burn wood, melt spots in concrete, and serve his family a cooked egg… Cool.

Projection mapping app helps create hologram like performance stage

projection-mapping-app-creates-live-desktop-stage

[Aimino] used an iPad, a mobile projector, and a mosquito screen to create a trippy hologram like stage. It might not seem like much at first, but it’s actually a pretty interesting effect. Watching the video makes me wonder what other applications this could have in the near future.

The world’s strongest magnet

worlds-strongest-magnet

At a cost of over $14 million dollars and weighing in at 35 tons, the 45 Tesla Hybrid is the strongest DC magnet on Earth. It’s powerful enough that the film crew couldn’t even safely get in to take footage of it.  Over half of their camera tapes were wiped clean just while being in the same facility that houses it!

Virtual Body chair uses 4 of our 5 senses

virtual-body-chair

Created in the hopes of providing a VR experience for seniors with mobility problems who can no longer travel the world, Tokyo Metropolitan University’s Ikei Laboratory presents the ‘Virtual Body’ exhibition. Included are a 3D monitor, a pair of headphones, a fan to create breezes and spread scents, a chair that moves and vibrates, and moving foot pedals.

Iron Man laser gauntlet pops balloons with ease

functional-iron-man-laser-gauntlet

If you’re an Iron Man fan with disposable income, you might want to check out this functional full metal laser gauntlet. Built from scratch using no blueprints or guides, [AnselmoFanZero] sells them for around $3K USD.

DIY Arduino Pro Mini quadcopter

DIY-arduino-pro-mini-quadcopter

[execUc] took a stock V929 quadcopter and started making some crafty customizations. The main change – the control electronics were replaced by an Arduino Pro Mini (16Mhz model). He soldered all the modules on a prototyping board and, although admittedly a bit heavy, the little guy takes flight with no problem.

Among other details, an HMC5883L (magnetometer) and MPU6050 (accelerometer / gyroscope) are used as sensors. A LiPo 7.4V battery pack supplies the power. The brushed motors are controlled by pulse-width modulation from SI2302 MOSFET with added diodes. He plans to swap out the micro-controller for an ARM7 stm32F103 for extra computing power, and needs to play with the PID values to correct a slight problem he seems to be having when rotating.

Check out a test flight video after the break. [execUc] has a thorough list of all the alterations he made in the video description, so be sure to read it.

[via Hacked Gadgets]

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 96,742 other followers