Sound Isolation Box Makes Living Room Based CNC Routing Tolerable

CNC Sound Enclosure for Living Room

CNC Machines can be loud, especially if they are equipped with a high-speed router spindle. Unfortunately, such a loud racket could be a problem for the apartment dwellers out there. Fear Not! [Petteri] has come up with a solution. It’s a sound isolation enclosure for his mini CNC Router that doubles as furniture. It keeps the sound and dust in while pumping out some cool parts….. in his living room.

What may just look like a box with an upholstered top actually had a lot of thought put into the design. The front MDF panel folds down to lay flat on the floor so that the user can kneel on it to access the machine without putting unnecessary stress on the door hinges. The top also is hinged to allow some top-down access or permit a quick peek on the status of a job. All of the internal corners of the box were caulked to be air tight, even a little air passageway would allow sound and dust to escape. Two-centimeter thick sound insulation lines the entire interior of the box and the two access lids have rubber sealing strips to ensure an air tight seal when closed.

With stepper motors, the spindle motor and control electronics all running inside an enclosed box, there is some concern over heat build up. [Petteri] hasn’t had any problems with that so far but he still installed an over-temp power cutoff made from a GFCI outlet and a thermostat temperature switch. This unit will cut the mains power if the temperature gets over 50º C by intentionally tripping the GFCI outlet. None of the internal parts will ignite under 300º C, so there is quite a safety buffer.

Although the isolation box came out pretty good, [Petteri] admits there is room for improvement; when cutting wood or aluminum, the noise level is kind of annoying. If he had to do it again, he would use thicker MDF, 20mm instead of 5mm. However, during general use while cutting plastic, the router is still quieter than his dishwasher.

Video below.

[Read more...]

Arduino Translates Signals Between Steering Wheel Buttons and Aftermarket Head Unit

DIY Steering Wheel Control Adapter

There is no question that steering wheel mounted controls are super convenient. Reaching all the way over to the dashboard to change a radio station is so 1990’s. An ever-increasing percentage of new cars are coming equipped with steering wheel controls for the stereo, however, you’ll lose the button control if you change out the stock head unit to something a little higher in quality. Sure, there may be an adapter readily available for your car/stereo combination, but there also may not be. [Ronnied] took the DIY road and made his own adapter.

The first obstacle for [Ronnied] was to figure out the wiring on the steering wheel controls. After some poking around he found that there were only two wires used for all of the control buttons, each button only changing the resistance between the two wires. The button states could easily be read by using an Arduino’s analog input. A Pro Mini model was chosen for its small size as it could be housed in the radio compartment of the dash.

The next step was getting the Arduino to control the aftermarket head unit. [Ronnied] did some research regarding JVC’s Stalk digital control interface but came to the conclusion that it would be easier to direct wiring the Arduino outputs to the appropriate spot on the head unit’s circuit board. To do this the button for each function that would also be represented on the steering wheel was traced out to find a common point on the circuit board. Jumper wires soldered to the circuit board simply allow the Arduino to emulate button pushes. To ensure that the head unit buttons still work in conjunction with the steering wheel buttons, the Arduino would have to keep the pins as inputs until a steering wheel button was pushed, the pin changed to an output, the signal sent and the pin changed back to an input. This feature was easily created in the Arduino sketch.

Video below.

[Read more...]

Automated Watering System Uses Neat DIY Water Valve

Neat DIY Valve for watering system

[Valentin] is an engineering student and hobbyist gardener. He was planning on going home for a 3 week semester break and certainly could not leave his balcony plants to fend for themselves. The clearly obvious solution was to make an automated watering system!

The most interesting part of this build is the valve. Anyone could have bought an off-the-shelf solenoid valve, not [Valentin], he designed his own. It is simple and just pinches the water supply tube to stop the flow of water coming from the elevated 20-liter water container. The ‘pinching’ arm is raised and lowered by an RC Car servo. When the valve is in the closed position, the servo does not need to continually apply pressure, the servo is powered down and the valve stays closed. This works because when the valve is closed, all forces are acting in a strictly radial direction on the servo’s drive disk. Since there is no rotation force, the drive disk does not rotate and the valve stays closed.

The servo is controlled by a microcontroller. Instead of rotating the servo to a certain degree, the servo rotates until it hits a limit switch. Those limit switches tell the microcontroller that the valve is either in the open or closed position. You must be asking yourself ‘what happens if the limit switch fails and the servo wants to keep rotating?’ [Valentin] thought of that too and has his code measure how long it is taking to reach the limit switch. If that time takes too long, the servo is powered down.

Video below.

[Read more...]

Digital Caliper Sacrificed For DRO Project

DIY Lathe DRO

In general, machining metal on a lathe or mill takes skill and patience as the accuracy of the cuts are important. To make those accurate cuts, it is important to know where the tool is located and how far it moves. For manual machines, the most basic method of determining position is by using graduated dials mounted on the hand cranks. Although these graduated dials can certainly be accurate, they may be difficult to see and they also require the operator to do math in their head on the fly with every full revolution of the dial. Another option would be a digital read out (DRO) which has an encoder mounted to the moving axes of the machine. This setup displays the exact position of the tool on an easy to read numeric display.

Professional DRO kits for mills and lathes can cost between a few hundred dollars to several thousand dollars.  [Robert] has a lathe, wanted a DRO but didn’t want to shell out serious cash to get it. He built his own for super cheap in an extremely resourceful way…. using a Harbor Freight Digital Caliper. A housing was first fabricated so that the added equipment would not hinder the axis travel of the lathe. The caliper was then cut to length, installed in the housing and the entire assembly was then mounted to the lathe.

DIY Lathe DROIt is totally reasonable to use the stock caliper display to read the positional information, however, even these cheap digital calipers have connections for the encoder output data, which can easily be read by a microcontroller. That means it is super simple to hook these low-cost digital calipers up to a display remotely located in a more convenient position.

 

EM Pulser Flings Washers, Side Effects May Include Curing Cancer or Death

DIY Electro Magnetic Pulser

Some folks believe that exposure to electromagnetic pulses helps the human body heal itself (one portion of the [Bob Beck] protocol). [Steffan] is one of those folks and was interested in EMP generation but wasn’t crazy about the several-hundred dollar price tag for professional units. As any determined DIYer would do, he set off to make his own.

This whole thing works by straight-out-of-the-wall 110v AC running through a couple 60 watt light bulbs before moving through a rudimentary rectifier circuit. The DC output from the rectifier charges five 130uF camera flash capacitors. An inductor coil is responsible for generating the EMP and is only separated from the capacitors by a single normally-open momentary switch. Although it is possible to wrap your own coil, [Steffan] decided to use an off the shelf 2.5mH unit normally used for speaker system crossovers. Once the momentary switch is pressed, the energy in the capacitors is discharged through the inductor coil and the EMP is created. To demonstrate that the pulser does indeed work, a metal washer was placed on the inductor coil and the unit fired resulting in the washer being thrown into the air.

[Stephan] did deviate from the some of the online designs he had researched, using 7 capacitors instead of the recommended 5. The result was a firecracker-like discharge sound and melting of the 14 gauge wire. Well, back to 5 caps.

Secret Door Is Now Not So Secret

Secret Outside Door

You’d be hard pressed to find someone who didn’t think secret doors are cool. They can come in many different forms, a built-in book case, a fake fireplace or even the rudimentary trap door under the rug. [oggfaba] has created a sweet secret door to enter his house. It is so well done there is no need for an architectural detail to hide it, it’s right there in plain sight.

To the unknowing onlooker, the rear of the house looks as any should with a window and water spigot. That water spigot is actually non-functional and acts as a door knob. The door-part of this secret door is just a standard fiberglass exterior door fitted with an electronic deadbolt and covered in exterior siding painted to match the rest of the house.

There are two methods to lock and unlock the door. There is a fob that can remotely unlock the installed deadbolt. There is also a keypad hidden under its own mini-secret door disguised as house siding material. There was no hacking involved with the deadbolt, keypad or remote. The Morning Industry QF-01SN deadbolt is available off the shelf with both unlocking options.

[Read more...]

DIY Magnetic Stirrer Looks Professional

Nice Looking DIY Magnetic Stirrer

Stirrers are used in chemistry and biology labs to mix containers full of liquids. Magnetic stirrers are often preferred over the mechanical types because they are more sterile, easier to clean and have no external moving parts. Magnetic stirrers quickly rotate a magnet below the glass beaker containing the liquids that need mixing. The magnetic field travels effortlessly through the glass and reacts against a small magnetic cylinder called the stir bar. The spinning stir bar mixes the contents and is the only part of the mixer that touches the liquids.

[Malcolm] built his own magnetic stirrer. Unlike some DIY stirrers out on the ‘web, this one gets an “A” for aesthetics. It’s clean white lines allow it to look right at home in the professional laboratory. The graduated knob looks good and is functional too as the the potentiometer it is attached to allows multiple mixing speeds. Surprisingly, a D-size battery is all that is needed to power the stirrer. Most of the parts required for this project can be found in your spare parts bin. [Malcolm] has written some excellent instructions on how he made the stirrer including a parts list and schematics.

Want to make a magnetic stirrer but aren’t into chemistry or biology? No worries… I pity the fool who don’t build one of these….

Follow

Get every new post delivered to your Inbox.

Join 94,612 other followers