3D Printed Switch Uses Paperclip

We live in a time when all manner of electronic components are practically a mouse click away. Still, we like to see people creating their own components. Maybe a stock part won’t fit or isn’t immediately available. Or maybe you just want to build it yourself, we get that. [Aptimex] shows off a design for a 3D printed slide switch that uses a paperclip for the contact material.

Of course, it had better be a metal paperclip and we’d make sure the shiny metal was pretty conductive. Of course, you could probably use thick wire to get the same effect. It sounds like [Aptimex] was inspired by an earlier Hackaday.io project that created a few different kinds of switches using similar techniques.

Continue reading “3D Printed Switch Uses Paperclip”

Paperclip Breadboard

TV’s MacGyver would love the breadboard arrangement we saw recently: it uses paperclips and crimping to make circuits that can be more or less permanent with no soldering. The basic idea is simple. A cardboard base has a piece of paper affixed. Metal paperclips are bent straight and glued to the paper using PVA glue (you know, like ordinary Elmer’s; hot glue would probably work, too). You could probably salvage wires out of old house wiring that would work for this, too.

The scheme uses two sizes of paper clips. Large ones are made straight and form the rails, while small paperclips make connections. The rails are bent to have a little “ear” that pushes into the cardboard base to hold them still. A little glue stabilizes them. The ears poke out the back, so the author suggests covering them with duct tape, hot glue, or another piece of cardboard. Using the top of a shoebox would also solve the problem.

Continue reading “Paperclip Breadboard”

No SD Card Slot? No Problem!

We feature hacks on this site of all levels of complexity. The simplest ones are usually the most elegant of “Why didn’t I think of that!” builds, but just occasionally we find something that is as much a bodge as a hack, a piece of work the sheer audacity of which elicits a reaction that has more of the “How did they get away with that! ” about it.

Such a moment comes today from [Robinlol], who has made an SD card socket. Why would you make an SD card socket when you could buy one is unclear, beyond that he didn’t want to buy one on an Arduino shield and considered manufacture his only option. Taking some pieces of wood, popsicle sticks, and paperclips, he proceeded to create a working SD card of such bodgeworthy briliance that even though it is frankly awful we still can’t help admiring it. It’s an SD card holder, and despite looking like a bunch of bent paperclips stuck in some wood, it works. What more could you want from an SD card holder?

Paperclips are versatile items. If an SD card holder isn’t good enough, how about using them in a CNC build?

MacGyvering Test Lead Clips

Okay fellow Make-Gyvers, what do you get when you cross a peripheral power cable jumper, a paperclip, springs, and some 3D-printed housings? DIY test lead clips.

Test clips are easily acquired, but where’s the fun in that? [notionSuday] started by removing the lead connectors from the jumper, soldering them to stripped lengths of paperclip, bent tabs off the connectors to act as stoppers, and slid springs over top. Four quick prints for the housings later, the paperclip assembly fit right inside, the tips bent and clipped to work as the makeshift clamp. Once slipped onto the ends of their multimeter probes, they worked like a charm.

Continue reading “MacGyvering Test Lead Clips”

Cardboard And Paperclip CNC Plotter Destined For Self-Replication

Last November, after [HomoFaciens]’ garbage-can CNC build, we laid down the gauntlet – build a working CNC from cardboard and paperclips. And now, not only does OP deliver with a working CNC plotter, he also plans to develop it into a self-replicating machine.

To be honest, we made the challenge with tongue firmly planted in cheek. After all, how could corrugated cardboard ever make a sufficiently stiff structure for the frame of a CNC machine? [HomoFaciens] worked around this by using the much less compliant chipboard – probably closest to what we’d call matboard here in the States. His templates for the machine are extremely well thought-out; the main frame is a torsion box design, and the ways and slides are intricate affairs. Non-cardboard parts include threaded rod for the lead screws, servos modified for continuous rotation, an Arduino, and the aforementioned paperclips, which find use in the user interface, limit switches, and in the extremely clever encoders for each axis. The video below shows highlights of the build and the results.

True, the machine can only move a pen about, and the precision is nothing to brag about. But it works, and it’s perfectly capable of teaching all the basics of CNC builds to a beginner, which is a key design goal. And it’s well-positioned to move to the next level and become a machine that can replicate itself. We’ll be watching this one very closely.

Continue reading “Cardboard And Paperclip CNC Plotter Destined For Self-Replication”

On-Demand Paper Clips

3D Printers are great for printing out parts or items you need, but can they really help if you run out of paper clips? Yes, the all important and extremely overlooked bent metal fastener can put a serious damper on your day if not readily available. There is a solution to this problem, it’s called the Paper Clip Maximizer 1.0. The only consequence of using such a machine may be the destruction of mankind.

The machine takes a spool of wire and methodically bends it into a paper clip shape. Just like an extruder on a 3D Printer, there is a knurled drive wheel with a spring-loaded bearing pinching the wire. This drive wheel is powered by an RC servo that has been modified for continuous rotation. After the drive mechanism, the wire passes through a sturdy guide block. Upon exit, the wire finds the bending head, also powered by a servo. There is a bearing on the end of the bending head that is used to bend the wire around the guide block. After making several bends to form the paper clip, the bending head swings around to cut off the newly manufactured clip with an abrasive wheel. Unfortunately, this part of the process doesn’t work well. The cutoff wheel motor is powered directly by the Arduino that controls the entire machine, the power output of which is not enough to easily cut the wire. It can also leave a sharp burr on the cut wire which is not a great feature for paper clips to have. But we just see these as future fodder for hacking sessions!

Continue reading “On-Demand Paper Clips”

Shower Occupancy Sensor Keeps Peace/Eliminates Odor At The Office

When the first two prototype ingredients listed are paperclips and Post-it notes you know it’s going to be good. The problem: one shower stall at work with numerous co-workers who bike to the office. The solution: a occupancy monitor that is smart enough to know that someone is actually in the room. You know what we’re talking about, a sensor that knows more than whether the door is open or closed. [James] got wise and built a sensor to monitor whether the door is bolted or not. We think this method is far superior to motion-based systems.

This uber-smart sensor is simply a pair of paperclips anchored on a rolled Post-it note substrate and shoved in the receiver on the door jamb. When the bolt is locked from the inside it pushes the paperclips together completing the simple circuit. This is monitored by a Spark Core but will work with just about any monitoring system you can devise. What we’re trying to figure out is how to ruggedize the paper-clip hack which we can’t think will perform well for very long. It looks like there’s room to bore out a bit more inside the receiver hole. Perhaps leaf switch with a 3D printed mounting bracket?

Oh, and kudos on the Ikea food storage container for the enclosure. That’s one of our favorite tricks for hacks which are installed for the long-run.