Retrotechtacular: ASCII Art in the 19th Century

Computer graphics have come a long way. Some video games today exceed what would have passed for stunning cinema animation only a few years ago. However, it hasn’t always been like this. One of the earliest forms of computer-generated graphics used text characters to draw on printers.

snoopy-calendarEarly computer rooms were likely to have a Snoopy character on green and white fan-fold paper. Calendars with some artwork were also popular (see left, and find out about the FORTRAN that created it, if you like). Ham radio operators who use teletypes (RTTY, in ham parlance) often had vast collections of punched tape that held artwork. Given that most hams in the 1950s and 1960s were men and the times were different, a lot of them were more or less “R” rated.

nixonNot all of them were, though. For example, Richard Nixon was decidedly “G” rated (see right). Simple pictures would use single characters, but sophisticated ones would use the backspace character to overprint multiple characters.

Ham Radio Art

You often hear this described as ASCII art, today, although hams usually use 5-bit BAUDOT code, so that’s a misnomer for those images, at least. Of course, today, people aren’t keen on storing roll after roll of paper tape (or even owning a tape reader) so there have been several projects to capture this art in a more modern format.

Although there is still some RTTY art activity, picture sending has been mostly replaced by slow scan TV (SSTV) which sends actual still images or other modes like FAX. Some of the newer digital modes even have the ability to send pictures. You can be discussing your radio for example, and then show the other ham a photo of the radio.

Continue reading “Retrotechtacular: ASCII Art in the 19th Century”

Retrotechtacular: An Unexpected Meeting With Philo T Farnsworth

It is not often that you look for one of your heroes on the Internet and by chance encounter another from a completely different field. But if you are a fan of the inimitable silent movie star [Buster Keaton] as well as being the kind of person who reads Hackaday then that could have happened to you just as it did here.

Our subject today is a 1957 episode of CBS’s TV game show I’ve Got a Secret! in which [Keaton] judges a pie-eating contest and is preceded first by a young man with a penchant for snakes and then rather unexpectedly by a true giant of twentieth century technology.

[Philo T Farnsworth] was a prolific engineer who is probably best known as the inventor of electronic television, but whose work touched numerous other fields. Surprisingly this short segment on an entertainment show was his only appearance on the medium to which his invention helped give birth. In it he baffles the panel who fail to guess his claim to fame, before discussing his inventions for a few minutes. He is very effacing about his achievement, making the point that the development of television had been a cumulative effort born of many contributors. He then goes on to discuss the future of television, and talks about 2000-line high-definition TV with a reduced transmission bandwidth, and TV sets like picture frames. All of which look very familiar to us nearly sixty years later in the early 21st century.

The full show is below the break, though [Farnsworth]’s segment is only from 13:24 to 21:24. It’s very much a show of its time with its cigarette product placement and United Airlines boasting about their piston-engined DC-7 fleet, but it’s entertaining enough.

Continue reading “Retrotechtacular: An Unexpected Meeting With Philo T Farnsworth”

Retrotechtacular: 6207, A Study In Steel

If you ever encounter railroad or railway enthusiasts, you may have heard the view that at some point in the past there was a golden age of rail transport that has somehow been lost. It’s something that’s up for debate as to when that age was or even whether with a selection of new super-high-speed trains snaking across our continents we’re in a golden age now, but it’s true to say that the rail business has had its fair share of decline in the last half-century.

It’s quite likely that when they talk of a golden age, they really mean a golden age of steam rail transport. At which point depending on where you live in the world it’s easier to put your finger on a decade. For UK residents a good candidate would be the 1930s; steam locomotive design had reached its peak, the rail network hadn’t been worn out by the demands of wartime, and private car ownership hadn’t eaten into their passenger numbers. The country was divided up into a set of regional rail monopolies, each of which had their own locomotive works and designers who were in fierce competition to show that their machines were the best and the fastest.

The LMS, the London Midland and Scottish railway company, served the northwestern segment of the country, North Wales, and the West of Scotland. Their high-speed express trains were in hot competition with those of the LNER, the London and North Eastern Railway, who served the eastern side of the country, to offer the fastest service from London to Scotland. It’s difficult to grasp through an 80-year lens, but this battle was one of national excitement, with the fastest locomotives becoming household names nationwide. The railway companies were justifiably proud of their engineering expertise, and so featured their locomotives as a key part of their marketing to the general public.

And so we come to the subject of today’s Retrotechtacular piece, a film below the break from 1935 following the construction of a high-speed express locomotive from start to finish in the LMS’s Crewe railway works. 6207 was one of a class of thirteen 4-6-2 Pacific locomotives designed by the company’s chief engineer [William Stanier], built between 1932 and 1935 and known as the Princess Royal class, all being named for princesses. In the film we see the various parts of the locomotive being cut, cast and forged from raw metal before being assembled in the Crewe plant. All the machinery is human controlled, and one of the surprises is sometimes the number of people involved in each task. The level of skill and experience in precision metalworking to be found in plants like Crewe was immense, and in some cases it is very difficult to find its equivalent in our own time.

Continue reading “Retrotechtacular: 6207, A Study In Steel”

Retrotechtacular: Fog Over Portland

In the early days of broadcast television, national spectrum regulators struggled to reconcile the relatively huge bandwidth required by the new medium with the limited radio spectrum that could be allocated for it. In the USA during the years immediately following World War Two there was only a 12-channel VHF allocation, which due to the constraints of avoiding interference between adjacent stations led to an insufficient number of possible transmitter sites to cover the entire country. This led the FCC in 1949 to impose a freeze on issuing licences for new transmitters, and left a significant number of American cities unable to catch their I Love Lucy or The Roy Rogers Show episodes.

The solution sought by the FCC was found by releasing a large block of UHF frequencies between 470 and 890 MHz from their wartime military allocation, and thus creating the new channels 14 to 83. An experimental UHF pilot station was set up in Bridgeport, Connecticut in 1949, and by 1952 the FCC was ready to release the freeze on new licence applications. The first American UHF station to go on air was thus KPTV in Portland, Oregon, on September 18th of that year.

UHF TV was a very new technology in 1952, and was close to the edge of what could be achieved through early 1950s consumer electronics. Though the 525-line TV standard and thus the main part of the sets were the same as their VHF counterparts, the tuner designs of the time could not deliver the performance you might expect from more recent sets. Their noise levels, sensitivity, and image rejection characteristics meant that UHF TV reception  did not live up to some of its promise, and thus a fierce battle erupted between manufacturers all keen to demonstrate the inferiority of their competitors’ products over the new medium.

The video below the break delivers a fascinating insight into this world of claim and counter-claim in 1950s consumer electronics, as Zenith, one of the major players, fires salvos into the fray to demonstrate the superiority of their products over competing models or UHF converters for VHF sets. It’s very much from the view of one manufacturer and don’t blame us if it engenders in the viewer a curious desire to run out and buy a 1950s Zenith TV set, but it’s nonetheless worth watching.

A key plank of the Zenith argument concerns their turret tuner. The turret tuner was a channel selection device that switched the set’s RF front end between banks of coils and other components each preset to a particular TV channel. Zenith’s design had a unique selling point that it could be fitted with banks of components for UHF as well as VHF channels thus removing the need for a separate UHF tuner, and furthermore this system was compatible with older Zenith sets so existing owners had no need to upgrade. Particularly of its time in the video in light of today’s electronics is the section demonstrating the clear advantages of Zenith’s germanium mixer diode over its silicon equivalent. Undeniably true in that narrow application using the components of the day, but not something you hear often.

Continue reading “Retrotechtacular: Fog Over Portland”

Retrotechtacular: Examining Music in 1950’s Russia

If you had told 12-year-old me that one day I would be able to listen to pretty much any song I wanted to on demand and also pull up the lyrics as fast as I could type the artist’s name and part of the title into a text box, I would have a) really hoped you weren’t kidding and b) would have wanted to grow up even faster than I already did.

The availability of music today, especially in any place with first world Internet access is really kind of astounding. While the technology to make this possible has come about only recently, the freedom of music listening has been fairly wide open in the US. The closest we’ve come to governmental censorship is the parental advisory sticker, and those are just warnings. The only thing that really stands between kids’ ears and the music they want to listen to is parental awareness and/or consent.

However, the landscape of musical freedom and discovery has been quite different in other corners of the world, especially during the early years of rock ‘n roll. While American teens roller skated and sock-hopped to the new and feverish sounds of Little Richard and Elvis Presley, the kids in Soviet Russia were stuck in a kind of sonic isolation. Stalin’s government had a choke hold on the influx of culture and greatly restricted the music that went out over the airwaves. They viewed Western and other music as a threat, and considered the musicians to be enemies of the USSR.

Continue reading “Retrotechtacular: Examining Music in 1950’s Russia”

Retrotechtacular: TV Troubleshooting

As technology advances, finding the culprit in a malfunctioning device has become somewhat more difficult. As an example, troubleshooting an AM radio is pretty straightforward. There are two basic strategies. First, you can inject a signal in until you can hear it. Then you work backwards to find the stage that is bad. The other way is to trace a signal using a signal tracer or an oscilloscope. When the signal is gone, you’ve found the bad stage. Of course, you still need to figure out what’s wrong with the stage, but that’s usually one or two transistors (or tubes) and a handful of components.

A common signal injector was often a square wave generator that would generate audio frequencies and radio frequency harmonics. It was common to inject at the volume control (easy to find) to determine if the problem was in the RF or audio sections first. If you heard a buzz, you worked backwards into the RF stages. No buzz indicated an audio section problem.

A signal tracer was nothing more than an audio amplifier with a diode demodulator. Starting at the volume control was still a good idea. If you heard radio stations through the signal tracer, the RF section was fine. Television knocked radio off of its pedestal as the primary form of information and entertainment in most households, and thus the TV repair industry was created.

Continue reading “Retrotechtacular: TV Troubleshooting”

Retrotechtacular: MONIAC

There is an argument to be made that whichever hue of political buffoons ends up in Number 10 Downing Street, the White House, the Élysée Palace, or wherever the President, Prime Minister or despot lives in your country, eventually they will send the economy down the drain.

Fortunately, there is a machine for that. MONIAC is an analogue computer with water as its medium, designed to simulate a national economy for students. Invented in 1949 by the New Zealand economist [WIlliam Phillips], it is a large wooden board with a series of tanks interconnected by pipes and valves. Different sections of the economy are represented by the water tanks, and the pipes and valves model the flow of money between them. Spending is downhill gravitational water flow, while taxation is represented by a pump which returns money to the treasury at the top. It was designed to represent the British economy in the late 1940s as [Philips] was a student at the London School of Economics when he created it. Using the machine allowed students and economists for the first time to simulate the effects of real economic decisions in government, in real time.

So if you have a MONIAC, you can learn all about spectacularly mismanaging the economy, and then in a real sense flush the economy down the drain afterwards. The video below shows Cambridge University’s restored MONIAC in operation, and should explain the device’s workings in detail.
Continue reading “Retrotechtacular: MONIAC”