Retrotechtacular: Tom Carter Revolutionized your Phone

It is hard to remember, but there was a time when you couldn’t hook much to a telephone line except a telephone. Although landlines are slowly falling out of favor, you can still get corded and wireless phones, answering machines, and even dial up modems. Alarm systems sometimes connect to the phone system along with medical monitoring devices and a host of other accessories.

All of that’s possible because of a Texan named Tom Carter. Tom Carter was the David that stood up to one of the biggest Goliath’s of his day: the phone company. The phone company had a legal monopoly on providing phone service. The reasoning was that it didn’t make sense to have multiple competing companies trying to run wires to every house and business in the country. Makes sense, right?

Continue reading “Retrotechtacular: Tom Carter Revolutionized your Phone”

Retrotechtacular: Old Transistors

1024px-Regency_transistor_radio
Regency TR-1

Transistors have come a long way. Like everything else electronic, they’ve become both better and cheaper. According to a recent IEEE article, a transistor cost about $8 in today’s money back in the 1960’s. Consider the Regency TR-1, the first transistor radio from TI and IDEA. In late 1954, the four-transistor device went on sale for $49.95. That doesn’t sound like much until you realize that in 1954, this was equivalent to about $441 (a new car cost about $1,700 and a copy of life magazine cost 20 cents). Even at that price, they sold about 150,000 radios.

Part of the reason the transistors cost so much was that production costs were high. But another reason is that yields were poor. In some cases, 4 out of 5 of the devices were not usable. The transistors were not that good even when they did work. The first transistors were germanium which has high leakage and worse thermal properties than silicon.

socketEarly transistors were subject to damage from soldering, so it was common to use an alligator clip or a specific heat sink clip to prevent heat from reaching the transistor during construction. Some gear even used sockets which also allowed the quick substitution of devices, just like the tubes they replaced.

When the economics of transistors changed, it made a lot of things practical. For example, a common piece of gear used to be a transistor tester, like the Heathkit IT-121 in the video below. If you pulled an $8 part out of a socket, you’d want to test it before you spent more money on a replacement. Of course, if you had a curve tracer, that was even better because you could measure the device parameters which were probably more subject to change than a modern device.

Of course, germanium to silicon is only one improvement made over the years. The FET is a fundamentally different kind of transistor that has many desirable properties and, of course, integrating hundreds or even thousands of transistors on one integrated circuit revolutionized electronics of all types. Transistors got better. Parameters become less variable and yields increased. Maximum frequency rises and power handling capacity increases. Devices just keep getting better. And cheaper.

A Brief History of Transistors

The path from vacuum tube to the Regency TR-1 was a twisted one. Everyone knew the disadvantages of tubes: fragile, power hungry, and physically large, although smaller and lower-power tubes would start to appear towards the end of their reign. In 1925 a Canadian physicist patented a FET but failed to publicize it. Beyond that, mass production of semiconductor material was unknown at the time. A German inventor patented a similar device in 1934 that didn’t take off, either.

Replica-of-first-transistor
Replica of the First Transistor

Bell labs researchers worked with germanium and actually understood how to make “point contact” transistors and FETs in 1947. However, Bell’s lawyers found the earlier patents and elected to pursue the conventional transistor patent that would lead to the inventors (John Bardeen, Walter Brattain, and William Shockley) winning the Nobel prize in 1956.

Two Germans working for a Westinghouse subsidiary in Paris independently developed a point contact transistor in 1948. It would be 1954 before silicon transistors became practical. The MOSFET didn’t appear until 1959.

Of course, even these major milestones are subject to incremental improvements. The V channel for MOSFETs, for example, opened the door for FETs to be true power devices, able to switch currents required for motors and other high current devices.

Continue reading “Retrotechtacular: Old Transistors”

Retrotechtacular: The Modern Telephone

We take recorded telephone messages for granted in these days of smartphones and VOIP. Our voicemail lives on an anonymous server in a data centre in the cloud somewhere, in a flash memory chip on our DECT base station, or if we’re of a retro persuasion, on a micro-cassette. Wherever we go, we now know our calls will not go unanswered.

Today’s subject takes us back to a time when automatically recording a phone call was the last word in high technology, with British Pathé newsreel piece from 1959 entitled “Modern Telephone”. Its subject is the Ansafone J10, one of the first telephone answering machines available on the British market. After featuring a fantastic home-made Meccano answering machine with turntable recording created by a doctor, it takes us to the Ansafone factory where the twin tape mechanisms of the commercial model are assembled and tested. Finally we get to see it in use on the desk of a bona fide Captain of Industry, probably about the only sort of person who could afford an Ansafone in 1959.

Part of the film’s charm comes not from the technology but from the glimpse it gives us of 1950s Britain sanitised for the newsreel. The clipped tones, leather armchairs and bookshelves, the coal fire and the engineer in a three-piece suit. The past is a foreign country; they do things differently there.

Take a look at the film below after the break, and never take your recorded calls for granted again.

Continue reading “Retrotechtacular: The Modern Telephone”

Retrotechtacular: The Incredibly Difficult Task of Copying a Document

It seems hard to imagine, but in the early part of the 20th century, there weren’t a lot of great options for creating copies of documents. The most common method was to use carbon paper to create multiple copies at once from a typewriter or a line printer. All that changed with a company called Haloid. Never heard of them? They later became the Xerox company.

The underlying technology dates back to 1938 (invented by a physicist who was also a lawyer). In 1944, they produced a practical copier and shortly thereafter sold the rights to Haloid. The Haloid company originally made photographic copy machines that used wet chemistry.

In 1959, the Xerox 914 (so called because it could copy a 9″ x 14″ document) came on the scene (that’s it, below). The 650 pound copier could make seven copies per minute and came with a fire extinguisher because it had a tendency to burst into flames. If you didn’t want to spend the $27,500 price tag, you could rent for only $25/month (keep in mind that in 1959, $25 would buy about 25 pounds of T-bone steaks). You can see a commercial for the 914 in the video below.

Xerox_914

In the commercial, you’ll see them make a big deal out of the fact that the print was dry. That’s because a lot of previous machines used actual photographic processes with wet chemistry. Obviously, that also took special paper.

Even Further Back

If the copier didn’t exist until recently, how did people make copies before? Turns out there were lots of ways to make copies of varying degrees of bad quality or extreme trouble. In some sense, the best copies were made by scribes just writing down a second copy of things. There were a variety of machines that would capture what you wrote and make a copy by mechanical or other means. A polygraph (not the lie detecting kind) allowed Thomas Jefferson to write letters and make a copy. The machine moved a pen to match the movements of the author’s pen, thus making a near perfect copy. With a few adjustments, this became the pantograph which not only does the same job, but also can shrink or enlarge the copy. Carbon paper was widely used to make multiple copies of handwritten and typewritten documents.

Continue reading “Retrotechtacular: The Incredibly Difficult Task of Copying a Document”

Retrotechtacular: The US Air Force Has The Biggest Fleet

When it comes to the superlatives of aviation, there are aircraft larger than the C-5 Galaxy. [Howard Hughes]’s Spruce Goose has the largest wingspan, and the Soviet and now Ukranian Antonov AN-225 Mriya has the largest cargo capacity. When it flies in the next year or so, Scaled Composites Stratolaunch – a twin-hulled beast of a plane designed to haul rockets up to 30,000 feet – will be the aircraft with the largest wingspan and the greatest cargo capacity.

These superlatives, while completely accurate, fail to realize these huge planes are one of a kind. There is no plan to build a second Stratolaunch, and the second airframe for the AN-225 is rusting away in a field. If you want to find a fleet of enormous aircraft, there’s only one contender: the C5 Galaxy, the largest plane in the US Air Force inventory.

This video, from the USAF Archives circa 1968, goes over the design, construction, and operation of the C5 Galaxy. It covers the program beginnings, the shortcomings of earlier aircraft, and – of course – completely disregards the initial problems of the C5.

Continue reading “Retrotechtacular: The US Air Force Has The Biggest Fleet”

Retrotechtacular: How Solidarity Hacked Polish TV

In the 1980s, Poland was under the grip of martial law as the Communist government of General Wojciech Jaruzelski attempted to repress the independent Solidarity trade union. In Western Europe our TV screens featured as much coverage of the events as could be gleaned through the Iron Curtain, but Polish state TV remained oblivious and restricted itself to wholesome Communist fare.

In September 1985, TV viewers in the city of Toruń sat down to watch an action adventure film and were treated to an unexpected bonus: the screen had a brief overlay with the messages “Solidarity Toruń: Boycotting the election is our duty,” and “Solidarity Toruń: Enough price hikes, lies, repression”. Sadly for the perpetrators, they were caught by the authorities after their second transmission a few days later when they repeated the performance over the evening news bulletin, and they were jailed for four months.

The transmission had been made by a group of dissident radio astronomers and scientists who had successfully developed a video transmitter that could synchronise itself with the official broadcast to produce an overlay that would be visible on every set within its limited transmission radius. This was a significant achievement using 1980s technology in a state in which electronic components were hard to come by. Our description comes via [Maciej Cegłowski], who was able to track down one of the people involved in building the transmitter and received an in-depth description of it.

Transmission equipment seized by the Polish police.
Transmission equipment seized by the Polish police.

The synchronisation came courtesy of the international effort at the time on Very Long Baseline Interferometry, in which multiple radio telescopes across the world are combined to achieve the effect of a single much larger instrument. Before GPS made available a constant timing signal the different groups participating in the experiment had used the sync pulses of TV transmitters to stay in time, establishing a network that spanned the political divide of the Iron Curtain. This expertise allowed them to create their transmitter capable of overlaying the official broadcasts. The police file on the event shows some of their equipment, including a Sinclair ZX Spectrum home computer from the West that was presumably used to generate the graphics.

There is no surviving recording of the overlay transmission, however a reconstruction has been put on YouTube that you can see below the break, complete with very period Communist TV footage.

Continue reading “Retrotechtacular: How Solidarity Hacked Polish TV”

Retrotechtacular: DC to DC Conversion by Vibrator

Electricity comes in two basic forms: Alternating Current (AC) and Direct Current (DC). DC is handy to use and is easy to analyze. However, AC has some useful properties too. In particular, AC current can operate a transformer which can step it up or down easily. Power is conserved, of course (well, actually, you get less power because of losses in the transformer).

You can’t do that trick with pure DC. You can reduce a voltage, although that typically wastes power in heat (for example, a voltage divider or linear regulator). You can’t readily increase a DC voltage unless you convert it into some sort of AC first.

This was a particularly bad problem in the era of tubes–especially tubes in car radios. The car’s voltage was probably 12V but the tube’s plates might take hundreds of volts. What do you do? Some old car radios used what is called a dynamotor. This is just a motor and a generator in one box. You could spin the motor with 12V and have the generator produce a different voltage (even a DC voltage).

Continue reading “Retrotechtacular: DC to DC Conversion by Vibrator”