Retrotechtacular: Pascal Got Frustrated at Tax Time, Too

While necessity is frequently the mother of invention, annoyance often comes into play as well. This was the case with [Blaise Pascal], who as a teenager was tasked with helping his father calculate the taxes owed by the citizens of Rouen, France. [Pascal] tired of moving the beads back and forth on his abacus and was sure that there was some easier way of counting all those livres, sols, and deniers. In the early 1640s, he devised a mechanical calculator that would come to be known by various names: Pascal’s calculator, arithmetic machine, and eventually, Pascaline.

The instrument is made up of input dials that are connected to output drums through a series of gears. Each digit of a number is entered on its own input dial. This is done by inserting a stylus between two spokes and turning the dial clockwise toward a metal stop, a bit like dialing on a rotary phone. The output is shown in a row of small windows across the top of the machine. Pascal made some fifty different prototypes of the Pascaline before he turned his focus toward philosophy. Some have more dials and corresponding output wheels than others, but the operation and mechanics are largely the same throughout the variations.

Continue reading “Retrotechtacular: Pascal Got Frustrated at Tax Time, Too”

Retrotechtacular: Pipeline to the Arctic

They said it couldn’t be done, and perhaps it shouldn’t have been attempted. Shouldas and couldas aside, the oil crisis of the 1970s paved the legislative way for an 800-mile pipeline across the Alaskan frontier, and so the project began. The 48-inch diameter pipe sections would be milled in Japan and shipped to Alaska. Sounds simple enough. But of course, it wasn’t, since the black gold was under Prudhoe Bay in Alaska’s North Slope, far away from her balmy southern climes.

The Trans-Alaska Pipeline System was constructed in three sections: from Valdez to Fairbanks, Fairbanks to a point in the Brooks Pass, and south from Prudhoe Bay to the mountain handoff. Getting pipe to the Valdez and Fairbanks is no big deal, but there is no rail, no highway, and no standard maritime passage to Prudhoe Bay. How on earth would they get 157 miles worth of 58-foot sections of pipe weighing over 8 tons each up to the bubblin’ crude?

Continue reading “Retrotechtacular: Pipeline to the Arctic”

Retrotechtacular: Supersonic Transport Initiatives

In the early days of PBS member station WGBH-Boston, they in conjunction with MIT produced a program called Science Reporter. The program’s aim was explaining modern technological advances to a wide audience through the use of interviews and demonstrations. This week, we have a 1966 episode called “Ticket Through the Sound Barrier”, which outlines the then-current state of supersonic transport (SST) initiatives being undertaken by NASA.

MIT reporter and basso profondo [John Fitch] opens the program at NASA’s Ames research center. Here, he outlines the three major considerations of the SST initiative. First, the aluminium typically used in subsonic aircraft fuselage cannot withstand the extreme temperatures caused by air friction at supersonic speeds. Although the Aérospatiale-BAC Concorde was skinned in aluminium, it was limited to Mach 2.02 because of heating issues. In place of aluminium, a titanium alloy with a melting point of 3,000°F is being developed and tested.

Continue reading “Retrotechtacular: Supersonic Transport Initiatives”

Retrotechtacular: Ma Bell’s Advanced Mobile Phone Service (AMPS)

This gem from the AT&T Archive does a good job of explaining the first-generation cellular technology that AT&T called Advanced Mobile Phone Service (AMPS). The hexagon-cellular network design was first conceived at Bell Labs in 1947. After a couple of decades spent pestering the FCC, AT&T was awarded the 850MHz band in the late 1970s. It was this decision coupled with the decades worth of Bell System technical improvements that gave cellular technology the bandwidth and power to really come into its own.

AT&T’s primary goals for the AMPS network were threefold: to provide more service to more people, to improve service quality, and to lower the cost to subscribers. Early mobile network design gave us the Mobile Service Area, or MSA. Each high-elevation transmitter could serve a 20-mile radius of subscribers, a range which constituted one MSA. In the mid-1940s, only 21 channels could be used in the 35MHz and 150MHz band allocations. The 450MHz band was introduced in 1952, provided another 12 channels.

repeated channelsThe FCC’s allocation opened a whopping 666 channels in the neighborhood of 850MHz. Bell Labs’ hexagonal innovation sub-divided the MSAs into cells, each with a radius of up to ten miles.

The film explains quite well that in this arrangement, each cell set of seven can utilize all 666 channels. Cells adjacent to each other in the set must use different channels, but any cell at least 100 miles away can use the same channels. Furthermore, cells can be subdivided or split. Duplicate frequencies are dealt with through the FM capture effect in which the weaker signal is suppressed.

Those Bell System technical improvements facilitated the electronic switching that takes place between the Mobile Telephone Switching Office (MTSO) and the POTS landline network. They also realized the automatic control features required of the AMPS project, such as vehicle location and automatic channel assignment. The film concludes its lecture with step-by-step explanations of inbound and outbound call setup where a mobile device is concerned.

Continue reading “Retrotechtacular: Ma Bell’s Advanced Mobile Phone Service (AMPS)”

Retrotechtacular: The Construction of Wooden Propellers

During World War I, the United States felt they were lagging behind Europe in terms of airplane technology. Not to be outdone, Congress created the National Advisory Committee for Aeronautics [NACA]. They needed to have some very large propellers built for wind tunnel testing. Well, they had no bids, so they set up shop and trained men to build the propellers themselves in a fantastic display of coordination and teamwork. This week’s film is a silent journey into [NACA]’s all-human assembly line process for creating these propellers.

Each blade starts with edge-grained Sitka spruce boards that are carefully planed to some top-secret exact thickness. Several boards are glued together on their long edges and dried to about 7% moisture content in the span of five or so days. Once dry, the propeller contours are penciled on from a template and cut out with a band saw.

Continue reading “Retrotechtacular: The Construction of Wooden Propellers”

Retrotechtacular: The (Long, Arduous) Birth of a Tank

Throughout the 1950s and early 1960s, the United States Army provided regular status reports to both its interior members and the American public through a half-hour documentary television show called The Big Picture. Since the program was produced by the government, every episode immediately entered the public domain. This particular report tells the story of the T-48 project that culminated in the 90mm M48 Patton tank.

The film opens by providing a brief history of tanks and the lessons learned about them between WWI and the Korean War. The Army sought a more robust vehicle that could handle a wide variety of climates and terrain, and so the process of information gathering began. After a series of meetings at the Pentagon in which all parties involved explored every facet, the project was approved, and a manila folder was officially designated to the project and labeled accordingly.

vesselsWe then tour the R&D facility where new tank materials and components are developed and tested. It is here that the drive gears are put through their paces on a torsion machine. Air cleaners are pitted against each other to decide which can filter out the finest dust and sand. After careful analysis, different tank shell materials are test welded together with various, well-documented electrodes, and these panels are taken outside so their welds can be directly fired upon.

Continue reading “Retrotechtacular: The (Long, Arduous) Birth of a Tank”

Retrotechtacular: How to Teletypewriter

This week, you’re going to learn the ins and outs of the AN/GRC-46 thanks to this army training film from 1963. What is the AN/GRC-46, you ask? Why it’s a complete mobile-tactical sheltered radio-teletypewriter rig capable of CW, voice, and teletype transmission.

The film covers the components that make up the AN/GRC-46, their functions, the capabilities of the system, and proper operation procedures. There’s a lot going on in the tiny 1400lb. steel shelter, so each piece will be introduced from the ground up.

You’ll become familiar with the voltage distribution system and the AN/GRC-46’s included accessories. This introduction will be followed by a short course in RF signal transmission and the Frequency-Shift Keying (FSK) that is performed by the modulator. The ranges of both the transmitter and receiver are discussed, along with the capabilities mentioned before: CW operation using the keyer, voice operation, teletype operation, and reperforation of teletype tape.

Finally, you’ll observe a seasoned operator make contact and send a teletype message with movements so careful and deliberate that they border on mesmerizing. When he’s not sending messages or taking long walks on the beach, he can usually be found cleaning and/or lubricating the transmitter filter.

Continue reading “Retrotechtacular: How to Teletypewriter”