Webserver Runs On Android Phone

Android, the popular mobile phone OS, is essentially just Linux with a nice user interface layer covering it all up. In theory, it should be able to do anything a normal computer running Linux could do. And, since most web servers in the world are running Linux, [PelleMannen] figured his Android phone could run a web server just as well as any other Linux machine and built this webpage that’s currently running on a smartphone, with an additional Reddit post for a little more discussion.

The phone uses Termux (which we’ve written about briefly before) to get to a Bash shell on the Android system. Before that happens, though, some setup needs to take place largely involving installing F-Droid through which Termux can be installed. From there the standard SSH and Apache servers can be installed as if the phone were running a normal Linux The rest of the installation involves tricking the phone into thinking it’s a full-fledged computer including a number of considerations to keep the phone from halting execution when the screen locks and other phone-specific issues.

With everything up and running, [PelleMannen] reports that it runs surprisingly well with the small ARM system outputting almost no heat. Since the project page is being hosted on this phone we can’t guarantee that the link above works, though, and it might get a few too many requests to stay online. We wish it were a little easier to get our pocket-sized computers to behave in similar ways to our regular laptops and PCs (even if they don’t have quite the same amount of power) but if you’re dead-set on repurposing an old phone we’ve also seen them used to great effect in place of a Raspberry Pi.

Retrotechtacular: TOPS Runs The 1970s British Railroad

How do you make the trains run on time? British Rail adopted TOPS, a computer system born of IBM’s SAGE defense project, along with work from Standford and Southern Pacific Railroad. Before TOPS, running the railroad took paper. Lots of paper, ranging from a train’s history, assignments, and all the other bits of data required to keep the trains moving. TOPS kept this data in real-time on computer screens all across the system. While British Rail wasn’t the only company to deploy TOPS, they were certainly proud of it and produced the video you can see below about how the system worked.

There are a lot of pictures of old big iron and the narrator says it has an “immense storage capacity.”¬† The actual computers in question were a pair of IBM System/370 mainframes that each had 4 MB of RAM. There were also banks of 3330 disk drives that used removable disk packs of — gasp — between 100 and 200 MB per pack.

As primitive and large as those disk drives were, they pioneered many familiar-sounding technologies. For example, they used voice coils, servo tracking, MFM encoding, and error-correcting encoding.

Continue reading “Retrotechtacular: TOPS Runs The 1970s British Railroad”

FLOSS Weekly Episode 776: Dnsmasq, Making The Internet Work Since 1999

This week Jonathan Bennett and Simon Phipps sit down with Simon Kelley to talk about Dnsmasq! That’s a piece of software that was first built to get a laptop online over LapLink, and now runs on most of the world’s routers and phones. How did we get here, and what does the future of Dnsmasq look like? For now, Dnsmasq has a bus factor of one, which is a bit alarming, given how important it is to keeping all of us online. But the beauty of the project being available under the GPL is that if Simon Kelley walks away, Google, OpenWRT, and other users can fork and continue maintenance as needed. Give the episode a listen to learn more about Dnsmasq, how it’s tied to the Human Genome Project, and more!

Continue reading “FLOSS Weekly Episode 776: Dnsmasq, Making The Internet Work Since 1999”

3D Printing With (Ersatz) Moon Dust

When the people of Earth set up bases on the moon, you can imagine that 3D printing will be a key enabling technology. Of course, you could ship plastic or other filament at great cost. But what if you could print with something you can already find on the moon? Like moon dust. NASA thinks it is possible and has been doing tests on doing just that. Now [Virtual Foundry] wants to let you have a shot at trying it yourself. It doesn’t really contain moon dust, but their Basalt Moon Dust Filamet has a similar composition. You can see a video about the material below.

It isn’t cheap, but it is probably cheaper than going up there to get some yourself. At least for now. The company is known for making PLA with various metal and ceramic materials. Like their other filaments, you print it more or less like PLA, although you need a large hardened nozzle, and they suggest a prewarmer to heat the filament before going to the hot end.

Continue reading “3D Printing With (Ersatz) Moon Dust”

2024 Home Sweet Home Automation: [HEX]POD – Climate Tracker And Digital Nose

[eBender] was travelling India with friends, when one got sick. Unable to find a thermometer anywhere during COVID, they finally ended up in a hospital. After being evacuated back home, [eBender] hatched an idea to create a portable gadget featuring a few travel essentials: the ability to measure body temperature and heart rate, a power bank and an illumination source. The scope evolved quite a lot, with the concept being to create a learning platform for environmental multi-sensor fusion. The current cut-down development kit hosts just the air quality measurement components, but expansion from this base shouldn’t be too hard.

ML for Hackers: Fiddle with that Tensor Flow

This project’s execution is excellent, with a hexagon-shaped enclosure and PCBs stacked within. As everyone knows, hexagons are the bestagons. The platform currently hosts SCD41 and SGP41 sensors for air quality, a BME688 for gas detection, LTR-308 for ambient light and motion, and many temperature sensors.

On top sits a 1.69-inch IPS LCD, with an OLED display on the side for always-on visualization. The user interface is completed with a joystick and a couple of buttons. An internal blower fan is ducted around the sensor array to pull not-so-fresh air from outside for evaluation. Control is courtesy of an ESP32 module, with the gory details buried deep in the extensive project logs, which show sensors and other parts being swapped in and out.

On the software side, some preliminary work is being done on training TensorFlow to learn the sensor fusion inputs. This is no simple task. Finally, we would have a complete package if [eBender] could source a hexagonal LCD to showcase that hexagon-orientated GUI. However, we doubt such a thing exists, which is a shame.

There are many air quality sensors on the market now, so we see a few hacks based on them, like this simple AQ sensor hub. Let’s not forget the importance of environmental CO2 detection; here’s¬†something to get you started.

The Roller Ship Was Not An Effective Way To Cross The High Seas

Boats come in all shapes and sizes. We have container ships, oil tankers, old-timey wooden sailing ships, catamarans, trimarans, and all sorts besides. Most are designed with features that give them a certain advantage or utility that justifies their construction for a given application.

The roller ship, on the other hand, has not justified its own repeat construction. Just one example was ever built, which proved unseaworthy and impractical. Let’s explore this nautical oddity and learn about why it didn’t make waves as its inventor may have hoped.

Continue reading “The Roller Ship Was Not An Effective Way To Cross The High Seas”

Sort Of Electromagnet Attracts Copper, Aluminum

It is a common grade school experiment to wind some wire around a screw, power it up, and watch it pick up paper clips or other ferrous materials. It is also grade school science to show that neither an electromagnet nor a permanent magnet will pick up nonferrous items like copper or aluminum. While technically not an electromagnet, it is possible to build a similar device that will weakly pull on copper and aluminum, and [Cylo] shows us how it works in a recent video you can see below.

The device sure looks like an electromagnet made with magnet wire and a steel core. But when he shows the ends of the core, you’ll see that the side that attracts aluminum has a copper ring embedded in it. The coil is fed with AC.

The magnetic field from the coil induces an opposite field in the copper ring that is out of phase with the exciting field. The two fields combine to produce a force on the metal it interacts with. This is often referred to as a shaded pole, and the same technique can help AC motors self-start as well as hold in relays driven by AC. If you want to see much more about aluminum floating on a magnetic field, check out the 1975 video from [Professor Laithwaite] in the second video below.

You probably have a shaded pole AC motor in your microwave oven. Or, maybe,your old 8-track player.

Continue reading “Sort Of Electromagnet Attracts Copper, Aluminum”