Amazing backyard rocket ship tree house

Ravenna_Ultra-Low-Altitude_Vehicle

If you thought you had a cool tree house as a kid, think again. Tasked with landscaping his back yard and building a tree house for his son, [Jon] decided to go all out and build him a rocket ship instead.

Rising 15 feet into the Seattle skyline, the tree house known as the Ravenna Ultra-Low-Altitude Vehicle (RULAV), is sure to be the envy of every kid in the neighborhood. [Jon] and a friend worked for well over a year on their creation, welding, grinding, painting, and riveting their way along. After the structure was built, they fabricated some custom PCBs, using them to build the ship’s 14 control panels. The entire operation is controlled by a custom OS built to run on the three ATmega MCUs that manage operations.

Not content with just a handful of knobs and switches, the ship contains over 800 LEDs among its laundry list of electronics goodies. Compressed air is used to shoot water from positioning “thrusters”, while a paint mixer spins under the ship to simulate the rough and bumpy nature of space travel. The simulated launches are capped off with plenty of authentic NASA-style audio and a sub woofer that gives everything a deep, resonating rumble.

The project is truly amazing, and a ton of work went into every little detail in order to make this the most spectacular tree house ever seen. [Jon] definitely takes the award for “Coolest Dad Ever” for this build, even we’re jealous!

The pictures certainly don’t do it justice, so be sure to check out the video below for a quick introduction and demo of this awesome project.

Thanks to [Jeremy Elson] for the tip.

[Read more...]

Model rocket radio telemetry

rocket_telemetry_data-analysis

[Ken] sent us his Instructable in which he used radio telemetry to monitor the status of his air-powered model rocket through a series of launches. His setup is centered around an Arduino IDE-compatible board that looks to be about the size of a Boarduino, but has the benefit of an embedded 915 MHz radio module. The vendor he used also sells a good handful of add-on modules which he used for his in-flight recording, including a barometric pressure monitor and a 3-axis accelerometer. During flight, the rocket constantly sends data to a base station, provided it stays within radio operating range.

For is initial tests, [Ken] launched his rocket four times, getting usable data on half of them. He found out some interesting things about his model rocket, including the fact that it creates a maximum launch force of 60 Gs. He has plans to revise his setup in the future, such as lightening the battery load as well as adding a high-G analog sensor for recording the forces at take off. This kit, or a more reasonably priced clone, would make for a great addition to any rocket buff’s inventory.

Attitude control for a really big rocket

If this is meant for a model rocket it must be the biggest we’ve ever seen. [Scott] and [Trevor] took on the task of building a rocket attitude control system after reading about some research on the topic. But that researcher only tested the theories using simulations so they set out to build their own. The prototype above has a tank of compressed Nitrogen which can hold up to 3000 PSI. You can begin to understand why this needs to be used with a big rocket. The pressurized gas is connected through a regulator to four valves which feed nozzles around the circumference of the fuselage. An Arduino takes readings from a gyroscope and actuates the gas valves via a relay board.

You can check out the test rig in the video after the break. The prototype is suspended horizontally from a wire and its orientation held at one position by the system. There’s also a paper (PDF) if you’re interested in the equations that went into the stabilization control. This system would have been right at home on that huge sugar rocket we saw back in October.

[Read more...]

Oxyhydrogen water rocket

[cmwslw] built a soda-bottle water rocket that uses the ignition of oxyhydrogen gas to quickly expel the water, as opposed to the usual compressed air and water mixture. His project contains excellent documentation with photos and it builds on other articles he’s written about generating the flammable HHO gas used to launch his craft into the skies. Every aspect of this project uses items most of us have at home or could score cheaply at most hardware stores.

We love seeing projects that re-purpose everyday materials into something fun. Just be sure to dodge the missile pop bottle as it speeds back to Earth!

Making model rocket motor igniters

[Stephan Jones] has an easy method for making your own model rocket engine igniter. The solid state motors used in this hobby consume one igniter with each electrically triggered launch. Whether you’re making your own motors or not, this construction technique should prohibit you from every buying an igniter again. The process involves bending some nichrome wire around a paper clip, adding some structural support to the leads using masking tape, and insulating the business end with a quick dip in paint.

Now would be a good time to send us your launchpad hacks. All we’ve seen so far is a launchpad for water rockets.

[via Make]

Hackaday links: October 3, 2010

Sugar rocket

We’re told that this rocket is sugar powered. It’s quite a bit bigger than the homemade sugar motors we saw last week and it makes for quite a show. [Thanks Estqwerty]

Wooden PC construction

The finished look of this wooden PC case seems very familiar to us but we’re not sure we’ve seen pictures of the build process(updated link, sorry [Jeff]) before. There’s something extremely satisfying about how well its creator works with a file. [Thanks Anders]

Working on top

We never realized that this job existed, but if you repair communication towers it’s a heck of a climb to work. The video of a two-man crew climbing a 1600 foot tower is one of the most interesting we’ve seen this year. [via Blogging Protagonist]

Lego typing machine

[Dougal's] typing machine types his name… over and over again. An interesting little piece of mechanical engineering, we’d have to think for a while to decide the best use for this little guy. [Thanks Chris]

Typing on a different type of keyboard

Here’s another typing machine but this time it’s not a keyboard and not purely mechanical. Pictured is one of the performers in an old equipment ensemble performing with whining stepper motors, speech synthesis, an other antiquated noise-makers. [Thanks Mike]


Homemade solid propellant rocket motors

[KoD] and [Navic] are building solid propellant motors using sugar and potassium nitrate. They cook up the two ingredients along with water and a bonding agent. They find that corn syrup is particularly good for bonding and that cooking the strange brew is more of an artform than science. Either way, the video after the break is proof of the dangers involved in this hobby. Testing the engine thrust with a bathroom scale ends badly for the scale.

There is something satisfying about the ingenuity that goes into the materials. For a casing they’re using PVC pipe, and forming a cone to focus the thrust by using a what amounts to plumber’s epoxy putty. The capping agent for the finished motor is ground up kitty litter.

This is an interesting read, but for now we’re going to stick to water rockets.

[Read more...]