Hand-Forged Cases Make Nixie Clocks into Works of Art

Both “Nixie” and “Steampunk” are getting a bit overused. It’s hard to count the number of clock projects we’ve seen recently that combine the two, and normally we’d be loath to feature yet another variation on that theme without a good reason. This is a good reason.

The single-digit Nixie clocks that [Claes Vahlberg] built are, simply put, works of art. There’s a small version of the clock, featuring a single IN-16 Nixie, and a larger version that uses a Dalibor Farny custom Nixie, a work of art in its own right. Each clock has features like time and date, temperature and barometric pressure, and even days remaining in the current lunar cycle. The cases for the clocks, though, are the real treat. Hand forged from steel, they remind us of steam whistles on top of a boiler.

[Claes] doesn’t have many details on the build process — we’ve been in contact and he says he’s working on documentation — but it doesn’t matter. As if all that weren’t enough, the clocks are controlled by a remote, which has its own IN-16 tube and is motion controlled. The last bit is a nice touch since there are no buttons to distract from the smooth lines of the hammered metal case.

We gush, but we think this one really shines. That’s not to take anything away from previous Nixie-steampunk mashups, like this single-digit clock or this solar power meter. But these clocks are a step beyond.

Continue reading “Hand-Forged Cases Make Nixie Clocks into Works of Art”

A Scratch-Built Drill Press Vise from Scrap

Never underestimate the importance of fixturing when you’re machining parts. No matter what the material, firmly locking it down is the key to good results, and may be the difference between a pleasant afternoon in the shop and a day in the Emergency Room. Flying parts and shattered tooling are no joke, but a lot of times quality commercial solutions are expensive and, well, commercial.  So this scratch-built drill press vise is something the thrifty metalworker may want to consider.

To be sure, [Ollari’s] vise, made as it is almost completely from scrap angle iron, is no substitute for a vise made from precision ground castings. But it’s clear that he has taken great care to keep everything as square and true as possible, and we give him full marks for maximizing his materials. And his tools — nothing more complicated than a MIG welder is used, and most of the fabrication is accomplished with simple hand tools. We like the way he built up sturdy profiles by welding strap stock across the legs of the angle iron used for the jaws, to give them a strong triangular cross-section to handle the clamping force. And using the knurled end of an old socket wrench as the handle was inspired; we’ll certainly be filing that idea away for a rainy day in the shop. Although we might use Acme rather than plain threaded rod.

We always enjoy seeing someone fabricate their own tools, and this one reminds us a bit of the full-size bench vise built up from layers of welded steel we featured a while back. It even looks a little like this 3D-printed vise, too.

Continue reading “A Scratch-Built Drill Press Vise from Scrap”

Sharpies and Glue Sticks Fight the Gummy Metal Machining Blues

“Gummy” might not be an adjective that springs to mind when describing metals, but anyone who has had the flutes of a drill bit or end mill jammed with aluminum will tell you that certain metals do indeed behave in unhelpful ways. But a new research paper seeks to shed light on the gummy metal phenomenon, and may just have machinists stocking up on office supplies.

It’s a bit counterintuitive that harder metals like steel are often easier to cut than softer metals; especially aluminum but also copper, nickel alloys, and some stainless steel alloys. But it happens, and [Srinivasan Chandrasekar] and his colleagues at Purdue University wanted to find out why, and what can be done about it. So the first job was to get up close and personal with the interface between a cutting tool and metal stock, to observe the dynamics of cutting. In a fascinating bit of video, they saw that softer metals tend to fold in sinuous patterns rather than breaking on defined shear planes.

Source: American Physical Society.

Having previously noted that cutting through Dykem, a common machinist’s marking fluid, changes chip formation in soft metals, the researchers tested everything from Sharpies to adhesive tape and even correction fluid, and found that they all helped to reduce the gumming action to some degree. Under their microscope they can clearly see that chips form differently once the cutting edge hits the treated surface, tending to act more brittle and ejecting rather than folding. They also noted a marked decrease in cutting force for the treated metal, and much-improved surface finish to boot.

Will Sharpies and glue sticks enter the book of old machinist’s tricks like gauge-block wringing? Only time will tell. But for now, this is a pretty fascinating bit of research that you might be able to put to the test in your shop. Let us know what you find in the comments.

Continue reading “Sharpies and Glue Sticks Fight the Gummy Metal Machining Blues”

TrackRobot Sports Welded Steel, Not Plastic

Don’t let the knee-high size of [Hrastovc]’s creation fool you. TrackRobot weighs in at a monstrous 60 kg (130 lbs) of steel, motors, and battery. It sports two 48V motors in a body and frame made from pieces of finger-jointed sheet steel, and can reach speeds of up to four meters per second with a runtime of up to an hour. The project’s link has more pictures as well as DXF files of the pieces used for the body.

Currently TrackRobot is remote-controlled, but one goal is to turn it into a semi-autonomous snow plow. You can see TrackRobot going through its first steps as well as testing out a plow prototype in the videos embedded below.

Continue reading “TrackRobot Sports Welded Steel, Not Plastic”

Military Surplus Repurposed for High Energy Physics

Performing high-energy physics experiments can get very expensive, a fact that attracts debate on public funding for scientific research. But the reality is that scientists often work very hard to stretch their funding as far as they can. This is why we need informative and entertaining stories like Gizmodo’s How Physicists Recycled WWII Ships and Artillery to Unlock the Mysteries of the Universe.

The military have specific demands on components for their equipment. Hackers are well aware MIL-SPEC parts typically command higher prices. That quality is useful beyond their military service, which lead to how CERN obtained large quantities of a specific type of brass from obsolete Russian naval ordnance.

The remainder of the article shared many anecdotes around Fermilab’s use of armor plate from decommissioned US Navy warships. They obtained a mind-boggling amount – thousands of tons – just for the cost of transport. Dropping the cost of high quality steel to “only” $53 per ton (1975 dollars, ~$250 today) and far more economical than buying new. Not all of the steel acquired by Fermilab went to science experiments, though. They also put a little bit towards sculptures on the Fermilab campus. (One of the few contexts where 21 tons of steel can be considered “a little bit”.)

Continue reading “Military Surplus Repurposed for High Energy Physics”

Opening the Door to Functional Prints

If you are going to do something as a joke, there is nothing to say that you can’t do a nice job of it. If you’re like [Michael], a whimsical statement like “Wouldn’t it be funny to put Gründerzeit-style doors on the server cabinet?” might lead down a slippery slope. True to his word, [Michael] not only installed the promised doors, but he did a darn nice job of it.

Buying new doors was the easy part because the door frame and hinges were not standardized back then, so there was nothing on the server cabinet to his mount doors. He walks us through all the steps but the most interesting point was the 3D printed door hinges which [Michael] modeled himself and printed in steel. His new hinges feature his personal flair, with some Voronoi patterning while matching the shape of the originals. We love seeing 3D printed parts used as functional hardware, and hinges are certainly a piece of hardware meant to hold up under pressure.

This is not the first 3D printed door hardware we’ve seen. Check out this innovative latch printed as a single piece and here’s the skinny on making flexible objects yourself.

Continue reading “Opening the Door to Functional Prints”

Engineering and Artistry Meet an Untimely End at Burning Man

Burning Man is so many different things to so many people, that it defies neat description. For those who attend, it always seems to be a life-changing experience, for good or for ill. The story of one man’s Burning Man exhibition is a lesson in true craftsmanship and mind-boggling engineering, as well as how some events can bring out the worst in people.

For [Malcolm Tibbets], aka [the tahoeturner], Burning Man 2017 was a new experience. Having visited last year’s desert saturnalia to see his son [Andy]’s exhibition, the studio artist decided to undertake a massive display in his medium of choice — segmented woodturning. Not content to display a bamboo Death Star, [Malcolm] went big– really big. He cut and glued 31,000 pieces of redwood into rings of various shapes and sizes and built sculptures of amazing complexity, including endless tubes that knot and loop around and back into each other. Many of the sculpture were suspended from a huge steel tripod fabricated by [Andy], forming an interactive mobile and kinetic sculpture.

Alas, Burning Man isn’t all mellowness in the desert. People tried to climb the tripod, and overnight someone destroyed some of the bigger elements of the installation. [Malcolm] made a follow-up video about the vandalism, but you’ll want to watch the build video below first to truly appreciate the scale of the piece and the loss. Here’s hoping that [Malcolm]’s next display is treated with a little more respect, like this interactive oasis from BM 2016 apparently was.

Thanks to [Keith Olson] for the tip.