Electrical Steel: The Material At The Heart Of The Grid

When thoughts turn to the modernization and decarbonization of our transportation infrastructure, one imagines it to be dominated by exotic materials. EV motors and wind turbine generators need magnets made with rare earth metals (which turn out to be not all that rare), batteries for cars and grid storage need lithium and cobalt, and of course an abundance of extremely pure silicon is needed to provide the computational power that makes everything work. Throw in healthy pinches of graphene, carbon fiber composites and ceramics, and minerals like molybdenum, and the recipe starts looking pretty exotic.

As necessary as they are, all these exotic materials are worthless without a foundation of more familiar materials, ones that humans have been extracting and exploiting for eons. Mine all the neodymium you want, but without materials like copper for motor and generator windings, your EV is going nowhere and wind turbines are just big lawn ornaments. But just as important is iron, specifically as the alloy steel, which not only forms the structural elements of nearly everything mechanical but also appears in the stators and rotors of motors and generators, as well as the cores of the giant transformers that the electrical grid is built from.

Not just any steel will do for electrical use, though; special formulations, collectively known as electrical steel, are needed to build these electromagnetic devices. Electrical steel is simple in concept but complex in detail, and has become absolutely vital to the functioning of modern society. So it pays to take a look at what electrical steel is and how it works, and why we’re going nowhere without it.

Continue reading “Electrical Steel: The Material At The Heart Of The Grid”

A Guide For Heat-Treating Steel At Home

A lot of colloquial words that we might use when describing something’s durability take on extremely specific meanings when a materials scientist or blacksmith uses them. Things like “strength”, “toughness”, “hardness”, and “resilience” all have different meanings when working in a laboratory or industrial setting than most people might otherwise think.

For the beginner metalworker, this can be a little bit confusing at first but some hands-on practice will help. To that end, this beginner lesson in heat-treating steel from [Blondihacks] demonstrates why it can be beneficial to trade some of the metal’s toughness for improved hardness and just how to accomplish it on your own.

The first part of the lesson is to make sure the steel is high-carbon steel, since most other steels aren’t able to be heat treated. It will also have a specific method for its quenching, either in oil, water, or some other medium. But beyond that the only other thing required for this process is a torch of some sort. [Blondihacks] is using a MAP-Pro torch to get the steel up to temperature, which is recognizable when it turns a specific orange color. From there all that’s needed is to quench the hot metal in whatever fluid is called for. At this point the metal can also be tempered, which restores some of its toughness while maintaining a certain amount of hardness.

While the process doesn’t require specialized tools, [Blondihacks] does have a hardness tester, a fairly expensive piece of instrumentation that measures how deeply the metal can be indented by a force. By measuring the size of the indentation made by the tool, the hardness can be determined. As it’s many thousands of dollars this is mostly for demonstration and not necessary for most of us, but does go a long way to demonstrate the effectiveness of heat treating and tempering in an otherwise simple environment. If you’re looking for excuses to start heat treating and tempering metal, here’s a great project which creates a knife nearly from scratch.

Continue reading “A Guide For Heat-Treating Steel At Home”

When Is Damascus Steel Not From Damascus?

If you grow up around a working blacksmith’s forge, there are a few subjects related to metalwork on which you’ll occasionally have a heated discussion. Probably the best known is the topic of wrought iron, a subject I’ve covered here in the past, and which comes from the name of a particular material being confused with a catch-all term of all blacksmith-made items. I’ve come to realise over recent years that there may be another term in general use which is a little jarring to metalwork pedants, so-called Damascus steel. Why the Syrian capital should pop up in this way is a fascinating story of medieval metalworking, which can easily consume many days of research.

Damascus? Where’s That?

A section of a knife blade with various silver grey and black layered patterns in the metal.
The banded pattern of the laminate formed from pattern welded layers of differing steels in a modern Damascus steel knife. “DamaszenerKlinge” by Soerfm

The Damascus steel you’ll see in YouTube videos, TV shows, and elsewhere is a steel with complex bands and striations on its surface. It’s often used in knife blades, and it will usually have been chemically treated to enhance the appearance of the patterns. It’s a laminate material made by pattern welding layers of different steels together, and it will usually have been worked and folded many times to produce a huge number of very thin layers of those steels. Sometimes it’s not made from sheets or ingots of steel but from manufactured steel products such as chains, in an attempt to produce a result with more unusual patterns. Continue reading “When Is Damascus Steel Not From Damascus?”

No Need To Buy A Woodchipper – Build One!

Polish YouTuber WorkshopFromScratch finally got fed up with tripping over piles of garden detritus and decided to have a go at building a woodchipper (Video, embedded below). Since they had a ‘small’ 1.5kW gearmotor just lying idle (as you do) it was an obvious fit for a machine that needs torque rather than supersonic speed. The video is a fabulous 20-minute journey through the workshop showing just about every conceivable metalworking tool being used at some point.

Checkout out the thickness of my blades!

One interesting point is the bottom roller, which sits between a pair of removable guides, which should help the thing self-feed without jamming. Whether that was necessary is not for us to judge, but it can’t hurt. The frame looks like it was constructed from at least 1/4″ thick steel, which is expensive if you don’t happen to have a supply to hand. There’s lots to see, everything from thin sheet metalworking, which was plasma cut, constructing the feed and exhaust guides, to box sections being skilfully welded at some interesting angles to make a cart to move the thing. They tell us the blades were constructed from some seriously thick slabs of C45 grade steel, but currently are not hardened. This is planned for the future, but we suspect not something that is easily achieved in the home workshop!

If this channel is familiar, then you might remember the earlier stump grinder they built. If you are drowning in sawdust, but have a log burner, then you’ll appreciate this sawdust briquette machine.

Continue reading “No Need To Buy A Woodchipper – Build One!”

Steel For Your Fighting Robot

The job of processing video after a large event must be a thankless one for whichever volunteer upon whose shoulders it falls, and thus it’s not unusual for talks at larger events to end up online much later than the event itself. Electromagnetic Field 2022 was last year, but they have continued to drop new videos. Among the latest batch is one from [Jennifer Herchenroeder], in which she discusses the steel used in her team’s BattleBot, Hijinx (Edit: her EMF talk was cut short due to time pressures, so she re-recorded it in full after the event and we’ve replaced the link. The EMF video meanwhile is here). The result is a fascinating introduction to the metallurgy of iron and steel, and is well worth a watch.

To fully understand the selection of armor steel it’s necessary to start from first principles with iron, to look at its various allotropes, and understand something of how those allotropes form and mix in the steel making and metalworking processes. We’re treated to a full description of the various tempering and hardening processes, before a panel-by-panel rundown of the various steels used by Hijinx.

For a Hackaday writer with a past in robot combat it’s fascinating to see how the design of robots has evolved over the decades since the British Robot Wars, and it’s particularly nice to see the current generation as part of our community. However, if you’ve tempted yourself, bear in mind that it’s not all plain sailing.

Continue reading “Steel For Your Fighting Robot”

Gas-Powered Fly Swatter Slightly Over-Engineered

Any good flyswatter ought to be able to break through a hefty piece of wood. At least, that is how [Finn] explains the design philosophy behind this enormous, overpowered flyswatter. Although we don’t know if everyone needs as robust a machine as this to deal with a minor annoyance like a house fly, we can certainly appreciate the over-engineered, extremely powerful (and dangerous) machine that can swat flies but also break through a two-by-four with ease.

The build comes to us in two parts, with the first part documenting the construction of some of the parts of the flyswatter, including the piston-driven gas cylinder. As a bit of a tangent, [Finn] first tests this part by using it to shoot lemons at pieces of plywood. After this initial testing of the gas cylinder, a cam mechanism is installed on the top, and the gas cylinder is slightly modified to pull on a piece of Dyneema rope attached to the cam. At the other end of the rope is a long metal lever with the flyswatter on the end, in this case, made out of a sheet of laser-cut plate steel.

With the addition of a few safety features, like a spring-assisted bumper to keep the flyswatter from swinging too far and hitting its operator, the machine is ready for use. It also eventually received some other upgrades as well including extra weights to prevent the flyswatter from bouncing after firing and a reinforced metal rod to hold the flyswatter after its demonstrations on various dimensional lumber destroyed it. In all likelihood, this is the largest insect-control device we’ve seen since this microwave-powered bug zapper. Now if you are building an insect

Continue reading “Gas-Powered Fly Swatter Slightly Over-Engineered”

Retrotechtacular: Understanding The Strength Of Structural Shapes

Strength. Rigidity. Dependability. The ability to bear weight without buckling. These are all things that we look for when we build a mechanical structure. And in today’s Retrotechtacular we take a closer look at the answer to a question: “What’s in A Shape?”

As it turns out, quite a lot. In a wonderful film by the prolific Jam Handy Organization in the 1940’s, we take a scientific look at how shape affects the load bearing capacity of a beam. A single sided piece of metal, angle iron, C-channel, and boxed tubing all made of the same thickness metal are compared to see not just just how much load they can take, but also how they fail.

The concepts are then given practical application in things that we still deal with on a daily basis: Bridges, cars, aircraft, and buildings. Aircraft spars, bridge beams, car frames, and building girders all benefit from the engineering discussed in this time capsule of film.

None of the concepts in this video are suddenly out of date, because while our understanding of engineering has certainly progressed since this film was made, these basic concepts remain the same. As such, they will apply to any structural or mechanical devices that we make, be it 3d printed, CNC routed, welded, glued, vacuum formed, zip tied, duct taped, bailing wired, or hot glued.

Keep your eyes open for a wonderful sights and sounds of a rare Boeing 314 Clipper landing on water and a 1920’s Buffalo Springfield Steam Roller demonstrating how wonderful the film’s sponsor, Chevrolet, makes their automobile frames.

Continue reading “Retrotechtacular: Understanding The Strength Of Structural Shapes”