It’s Opposite Day For This Novel Wankel Engine

The Wankel engine seems to pop up in surprising places every so often, only to disappear into the ether before someone ultimately resurrects it for a new application and swears to get it right this time. Ultimately they come across the same problems that other Wankels suffered from, namely poor fuel efficiency and issues with reliability. They do have a surprising power-to-weight ratio and a low parts count, though, which is why people keep returning to this well, although this time it seems like most of the problems might have been solved simply by turning the entire design inside out.

A traditional Wankel engine has a triangular-shaped rotor that rotates around a central shaft inside an oval-shaped housing. This creates three chambers which continually revolve around inside the engine as the rotor spins. The seals that separate the chambers are notoriously difficult to lubricate and maintain. Instead of using a rotor inside of a chamber, this design called the X-Engine essentially uses a chamber inside of a rotor, meaning that the combustion chamber and the seals stay in fixed locations instead of spinning around. This allows for much better lubrication of the engine and also much higher efficiency. By flipping the design on its head it is able to maintain a low moving parts count, high compression ratio, and small power-to-weight ratio all while improving reliability and performance and adding the ability to directly inject fuel rather than rely on carburetion or other less-ideal methods of fuel delivery that other Wankels require.

Astute internal combustion aficionados will note that this engine is still of a two-stroke design, and thus not likely to fully eliminate the emissions problems with Wankels in a way that is satisfactory to regulators of passenger vehicles. Instead, the company is focusing on military, commercial, and aerospace applications where weight is a key driver of design. We’ve seen time and time again how the Wankel fails to live up to its promises though, and we hope that finally someone has cracked the code on one that solves its key issues.

Mazda Patents Spinning Dorito To Extend EV Range

OK, so a Wankel engine doesn’t really use a Dorito as its cylinders, but it sure looks like one. The company has announced it will offer a range extender rotary engine for the MX-30 electric “crossover” vehicle, but [CarBuzz] dug into the patent papers to find out that it has some interesting twists.

The MX-30 is an EV with a relatively small 35.5 kWh battery. Like a hybrid vehicle, the car includes a small internal combustion engine that can charge the battery. It does not, however, directly drive the wheels at any time. The Wankel has several improvements, including a secondary port that allows more air into the combustion chamber when the engine has to produce high power. But there’s a problem…

The secondary port is great when you are pushing hard, but at low speed, it produces inefficiency. To combat that, Mazda includes a valve to seal off the second port when it doesn’t make sense to open it. But that’s not the strange part. The strange part is that the engine also has its own electric assist motor that runs off the main battery.  That’s right. The battery you are charging provides some energy to operate the electric assist motor to help the engine that is charging the battery. If that makes your head spin like the Wankel’s rotor, you aren’t alone.

The assist motor can assist or retard the output shaft during the intake stroke. This can optimize the intake to the combustion chamber. Of course, this will cause odd movement in the engine’s output, but since it doesn’t drive the car, who cares? The battery isn’t going to mind if the output isn’t smooth.

The Wankel shows up in a lot of odd places. We’ve seen Wankel air compressors. Despite detractors, there have been many improvements in the design over the years.

3D Printer Air Compressor Is A Wankel

We wonder if mechanics are as annoyed when we say “engine” as we get when someone talks about a “computer” or a “radio.” Sure, you know what all three of those words mean, but there are many different kinds of radios, computers, and engines. In [3DprintedLife’s] case, he made a compressed air engine of the Wankel style.

The Wankel — a rotary engine — is most famous for its use in some Mazda cars. If you’ve done a lot of 3D printing, you know that creating an air-tight piston on a 3D printer is no mean feat. Of course, he didn’t do it right off the bat. It took what looks like a number of iterations to get it going, and he shares some of what he learned doing this project.

Continue reading “3D Printer Air Compressor Is A Wankel”

The Rotary-X Engine Is A Revolution In Thermodynamics

If you’re running an army, chances are good that you need a lot of portable power for everything from communications to weapons control systems. When it comes to your generators, every ounce counts. The smaller and lighter you can get them, the better.

Connecticut-based company LiquidPiston is developing a high-powered generator for the US Army that uses the company’s own rotary x-engine — a small, light, and powerful beast that sounds like a dream come true. It can run on gasoline, diesel, natural gas, kerosene, or jet fuel, and is scalable from 1 to 1,000 horsepower (PDF).

Co-founder and CEO Alex Schkolnik describes the design as a combination of the best parts of the Otto and Atkinson cycle engines, the Diesel, and the Wankel rotary while solving the big problems of the latter two. That sounds impressive, but it doesn’t mean much unless you understand how each of these engines work and what their various advantages and disadvantages are. So let’s take a look under the hood, shall we?

Continue reading “The Rotary-X Engine Is A Revolution In Thermodynamics”

3D-Printing Wankel Engine From Mazda’s Beloved “Rotary Rocket”

Although there was briefly a company called Rotary Rocket, the term is much better known as a nickname for the Mazda RX-7 — one of the few cars that used a Wankel, or rotary, engine. If you ever wondered how these worked, why not print a model? That’s what [Engineering Explained] did. They printed a 1/3 scale model and made a video explaining and demonstrating its operation. The model itself was from Thingiverse, created by [EricThePoolBoy].

One thing we really liked about the model was the use of lights to show the different stages of combustion. Cool air intake is a blue light, hot air is red, and so on. It really helps visualize what’s happening. You can watch the video below.

If you haven’t seen a Wankel before, it is a clever design. It has very few moving parts and offers very smooth power transfer and high power to weight ratio. The downside, though, is that the engine deliberately burns oil to lubricate and seal, so it is difficult to meet emission standards and requires a lot of oil. The fuel efficiency of current designs is not very good either, especially since manufacturers will often trade fuel efficiency for better emissions.

If you’d like to read more about the Wankel, check out our earlier post (and the 165 comments attached). We also looked at — or rather through — another Wankel earlier this year.

Continue reading “3D-Printing Wankel Engine From Mazda’s Beloved “Rotary Rocket””

See-Through Rotary Engine Reveals Wankel Magic

The Wankel rotary engine is known for its troubled life in the mainstream automotive industry, its high power-to-weight ratio, and the intoxicating buzz it makes at full tilt. Popular with die-hard enthusiasts and punishing to casual owners, it stands as perhaps the most popular alternative internal combustion design to see the light of day. There are myriad diagrams out there to explain its operation, but what if you could see inside?

The video comes courtesy of [Warped Perception], and features a small Wankel rotary engine intended for model aircraft. The engine’s end plate is removed and replaced with a transparent plate, making the combustion process visible. Add in a high-speed camera, and you’ve got a recipe for a great technical video.

It starts with a basic explanation of how the Wankel rotary power cycle operates, before cutting to the glorious slow-motion shots of the engine in operation. It also highlights several techniques useful for producing this type of video, such as painting surrounding components black to make it easier to image the parts of interest. The visuals are amazing and very clearly show the  manner in which the intake, compression, power and exhaust strokes function in the engine.

Continue reading “See-Through Rotary Engine Reveals Wankel Magic”

Broken Promises Of The Wankel Engine

Through the history of internal combustion engines, there has been plenty of evolution, but few revolutions. Talk of radically different designs always leads to a single name – Wankel. The Wankel rotary engine, most notably used in automobiles by Mazda, has been around since the late 1950’s. The Wankel rotary is an example of a design which makes sense on paper. However, practical problems cause it to underperform in the real world.

Invention and History

felixwankelFelix Wankel’s engine was conceived during a dream. In it, 17-year-old Felix was driving his car to a concert. When he arrived, he bragged to his friends that his car used a new type of engine – half turbine, half reciprocating. “It is my invention!” he told his friends. Upon waking up, Wankel became dedicated to building his engine. Though he never received a formal degree (or a driver’s license), Wankel was a gifted engineer.

Young Wankel’s checkered history includes membership in several anti-semitic groups in the 1920’s. He was also involved with the founding of the Nazi party. His conflicting views on the direction of the party lead to his arrest in 1933. Eventually released through action of Hitler himself, Wankel joined the SS in 1940. The end of the war saw Wankel spending several months in a French prison for his wartime involvement.

Continue reading “Broken Promises Of The Wankel Engine”