Cornell ECE 4760 Lecture Videos Now Online

Whenever we hear about ECE 4760 we take notice. That’s because a ton of fantastic hacked together projects have resulted from the class. It’s offered at Cornell University and focuses on designing projects based on microcontrollers. We look at it as a ‘how to connect everything to your microcontroller’ guide. The good news for you is that 34 lecture videos from the Spring 2012 ECE 4760 class are now available to watch for free online. When coupled with the course webpage itself (which outlines the reading, labs, and homework) this turns into an opportunity to work through the entire course on your own schedule.

If you need a brief preview, here’s a couple random things we’ve seen as final projects from the course: a digital saxophone, a handwriting decoder, and a haptic feedback unit for building your biceps.

We’re still working our way through the Nand2Tetris project, but we’re putting these lectures on our watch list for later.

[via Reddit]

How To Setup A Hackerspace From Someone Who’s Done It Before

We just got a tip from [PT] that a seven part series on how to start a Hackerspace will be posted this week. The blog over at Adafruit will be publishing one installment a day. Right now the introduction (linked above) and volume 1 are available. This covers what a Hackerspace is and who you might attract to help you get started. Tomorrow’s installment covers requirements you have to meet, which we assume delves into tax status (what you have to do to get 501c3 non-profit status) and financial reporting. But we’ll have to wait and see to know for sure.

The series is written by [Eric Michaud]. He founded HacDC in Washington, D.C. and Pumping Station: One in Chicago. He also helps others by consulting on startup spaces and embodies a wealth of knowledge on the topic.

If you’re area doesn’t yet have its own Hackerspace read this along with your buddies and see if you’ve got what it takes to get one going.

interesting fact: The hackaday logo is one of the watermarks in the lining of the hackerspace passport.

Building A Mechanical Counter Out Of Scrap Wood

Watching [Matthias Wandel] fabricate this mechanical counter from scrap wood is just fascinating. He likens the mechanism to the counters you would find on decades-old cassette tape players.

You may recognize the quality of [Matthias’] work. We’ve seen several pieces, but his binary adder is still one of our favorites. This project gives us a very clear view of the development and fabrication process. He even posted a detailed guide if you want to build your own.

He started by prototyping a mechanism to increment and decrement the counter. With that proven design he started laying out the rest of the gears. These were cut from plywood scraps he had from other projects. Notice the small gears seen above which are missing parts of some teeth. Those sections were removed using a drill press with a Forstner bit. The missing teeth cause the next digit over to increment more slowly, resulting in a 1/10 ratio. This part of the design is demonstrated about three minutes into the video after the break.

Continue reading “Building A Mechanical Counter Out Of Scrap Wood”

Birthday Badges Teach Kids How To Solder

[Ian Lee, Sr] wanted to have an educational activity at his younger son’s birthday party. These were uncharted waters for him as he doesn’t remember education taking place at his own early birthday parties. But he came up with a great idea, with was to teach soldering using interactive badges which each guest could assemble themselves. He needed about twenty, so he tried to keep the BOM as small as possible. But that didn’t mean skimping on features.

You can see the black LED-type package on the left of the assembled badge above. This is an IR receiver whose counterpart transmitter is on the right side of the board. When two of these get within 6-8″ of each other the start talking back and forth. There is no microcontroller involved, instead the system relies on a multivibrator design. One of the red LEDs at the corner of the ‘smile’ is always blinking. When it is off, the IR transmitter is powered. This is picked up by another badge’s receiver, which lights the second ‘smile’ LED. You can see this happen in the short clip after the break.

Although there are relatively few components that went into this, it would take the kids a long time to put them together as they’re just learning. [Ian] and his eldest son soldered on all of the components except for the resistors beforehand.

Continue reading “Birthday Badges Teach Kids How To Solder”

Robot Stroller Lets Baby Steer Without Mowing Down Other Toddlers

We’ve seen strollers and car seats that have a steering wheel for the baby to play with (like in the opening of The Simpsons). But what we hadn’t seen is a stroller that allows baby to actually steer. You might think that a putting a motorized vehicle in the hands of someone so young is an accident waiting to happen. But [Xandon Frogget] thought of that and used familiar hardware to add some safety features.

The stroller seen above is a tricycle setup, making it quite easy to add motors to the two rear wheels. These are controlled by a tablet which you can see nestled on the canopy of the stroller (look for the light reflected on the glass). This interfaces with two Kinect sensors, one pointing forward and the other pointing back. They continually scan the environment, looking for obstacles in the stroller’s path. You can see [Xandon’s] little girl holding a Wii Wheel, which connects with the tablet to facilitate steering. A test run at the playground is embedded after the break.

Continue reading “Robot Stroller Lets Baby Steer Without Mowing Down Other Toddlers”

Developing A Thermostat For A Heat Pump That Only Has A Timer

The heat pump which cools [Chris LeBlanc’s] home lacks the sort of control he was looking for. It’s just got a timer, which switches it off automatically. He wanted to the ability to schedule the cooling cycle like you would with a thermostat-driven arrangement. He ended up build his own controller to automate the cooling process.

The heat pump came with an IR remote control which provides the access point for the project. [Chris] set out to emulate the remote protocol which saved him the trouble of having to crack open the unit and wire in a controller. He went with the IR Toy from Dangerous Prototypes as this device is able to record and transmit IR signals — it’s basically a universal remote for your USB port. His Raspberry Pi, seen to the left, controls the system. It’s connected to the red IR Toy board via a USB hub which is used to interface a WiFi dongle as well. The system works alongside Google Calendar to allow [Chris] to schedule his home’s cooling just by adding an appointment. A Python script queries the calendar, then selects and sends the appropriate IR command. He shows off the build in the clip after the break.

Continue reading “Developing A Thermostat For A Heat Pump That Only Has A Timer”

Building A Thermal Imaging Sensor From Scratch

[youtube=http://www.youtube.com/watch?v=pIb1scnD67o&w=470]

[Rob] lives in a 100-year-old house, and with these antique lath and plaster walls and old window frames comes a terrible amount of drafts. The usual way to combat this energy inefficiency is with a thermal imaging camera, a device that overlays the temperature of an object with a video image. These cameras are hideously expensive so [Rob] did what any of us would do and built his own.

The build centers around a Melexis MLX90620 far infrared thermopile that can be had for about $80. Basically, this sensor is a very, very low resolution camera (16×4 pixels) that senses heat instead of light. By sticking this sensor on a breadboard with an Arduino Mini and WiFly network adapter, [Rob] is able to pull the data down from the IR sensor to his iPhone and overlay it on the feed from the camera.

The result, as seen in the video above, is a low-resolution but still very useful thermal imaging camera, perfect for looking for cold drafts in an old house or tracking down [Arnie] just like a Predator.

Tip ‘o the hat to [Ronald] for sending this one in.