Hackaday Links: October 3, 2012

Cheap ergonomic mouse

If your had keeps cramping while using the computer mouse why not grab a hunk of wood and a couple of buttons to make your own ergonomic input device?

C# GUI for Arduino testing

Here’s a Windows GUI for controlling Arduino. [Rohit] put it together using C#. It should make development very simple as you have control of almost everything before you need to worry about writing your own server-side software.

Networked strip lighting replaces the office overheads

[Jeremy] got tired of replacing the halogen bulbs in his office. He upgraded to ten meters of RGB LED strips. We can’t think they do as well at lighting up the room. But he did add network control so they can flash or change colors depending on what type of alert they’re signalling.

Woven QR codes

Now that [Andrew Kieran] proved you can weave a working QR code into textiles do you think we’ll see garments that have a QR code leading to care instructions? We could never figure out what all those strange icons stood for.

World’s largest QR code in a corn maze

The world’s largest QR code was cut out of this field of corn. It’s at the Kraay Family Farm in Alberta, Canada. Gizomodo called it “Stupidly Pointless”. But we figure if it got them a world record and put their website on the front page of Giz and Hackaday they’re doing okay. Plus, we whipped out our Android and it read the QR code quite easily.

How TO Dim EL Wire: Current Limiting The Oscillator!

[Ch00f] finally made a breakthrough with his efforts dimming EL wire.  He’s been at it for months and the last we heard his TRIAC idea had sputtered out. Not to be discouraged and with an determination we have to admire he has been hard at work reverse engineering others’ and developing his own methods. He put all of this knowledge to task helping a friend of his with a sleeping disorder, and made a dream-catcher that pulses at the approximate rate of an average person’s breathing (as determined by Apple for their pulsing power button lights).

Essentially the whole thing boils down to simply using a transistor to limit the current to the oscillator. A 555 timer is used to pass a triangle wave to the current limiting transistor at approximately the same rate as the Apple button (1/5 Hz). [Ch00f] notes that this isn’t the sinusoidal wave that apple uses, but it’s good enough. Finally a timeout power off is built in to the night light using a decade counter to monitor the number of triangles from the 555. This should keep the EL wire from wearing down faster, though we are hard pressed to  think of a project we used EL on that has lasted anywhere near the 7 year service life of the wire.

Check out [Ch00f]’s page as he walks us through the process, or just watch his circuit in action after the jump!

Continue reading “How TO Dim EL Wire: Current Limiting The Oscillator!”

Finally, An ARM-powered Arduino

Far removed from the legions of 3D printers featured at this year’s Maker Faire in New York was a much smaller, but far more impressive announcement: The ARM-powered Arduino DUE is going to be released later this month.

Instead of the 8-bit AVR microcontrollers usually found in Arduinos, the DUE is powered by an ATSAM3X8E microcontroller, itself based on the ARM Cortex-M3 platform. There are a few very neat features in the DUE, namely a USB On The Go port to allow makers and tinkerers to connect keyboards, mice, smartphones (hey, someone should port IOIO firmware to this thing), and maybe even standard desktop inkjet or laser printers.

The board looks strikingly similar to the already common Arduino Mega. That’s no mistake; the DUE is compatible with existing shields, so connecting a RAMPS board for your 3D printer should be a snap.

Here’s a PDF the Arduino and Atmel guys were handing out at their booth. A few DUE boards have already made it into the hands of important people in the Arduino community, including 3D printer guru [Josef Prusa]. Sadly, the folks at Arduino didn’t think media personalities needed a DUE before its release, so you’ll have to wait until we get our hands on one later this month for a review.

Through-hole Electroplating In Your Home Lab

For the few double-sided PCBs we’ve actually etched at home we simply soldered a piece of wire to either side of a via and clipped off the excess. But if you want to go the extra mile you can’t beat electroplated through holes. The setup seen above is an electroplating tank build from simple materials which [Bearmos] has been working on.

The two sets of copper structures are both used as anodes. Some copper water pipe (like you’d use for a refrigerator ice maker) was cut into short rods and soldered onto pieces of bus wire. The portion of the metal which will stick above the chemical bath was coated with a generous layer of hot glue. This will protect it from corrosion cause by the off-gassing during the plating process. The traces of the etched PCB act as the anodes, but the holes themselves must be conductive in order for the plating process to work. A water proof glue with powdered graphite mixed in is applied to all of the holes in the substrate. This technique is based on the huge electroplating guide published by Think & Tinker.

Intelligent Autonomous Vehicle Makes It To Maker Faire

A few guys from Rutgers showed up at Maker Faire with Navi, their vehicle for the 2012 Intelligent Ground Vehicle Competition. Powered by two huge lead acid batteries, Navi features enough high-end hardware to hopefully make it through or around just about any terrain.

Loaded up with a laser range finder, a stereo camera setup, compass, GPS receiver, and a pair of motors capable of pulling 40A, Navi has the all the hardware sensors required to make it around a track with no human intervention. Everything is controlled by a small netbook underneath the control panel, itself loaded up with enough switches and an 8×32 LED matrix to be utterly incomprehensible.

In the videos after the break, the guys from Rutgers show off the systems that went into Navi. There’s also a video showing off Navi’s suspension, an impressive custom-built wishbone setup that will hopefully keep Navi on an even keel throughout the competition.

Also of note: A PDF design report for Navi and Navi’s own blog.

Continue reading “Intelligent Autonomous Vehicle Makes It To Maker Faire”

Checking In With [Ian] From Dangerous Prototypes

Former Hackaday writer and electronic wizard [Ian] from Dangerous Prototypes made his way to the Maker Faire last weekend. He had a ton of cool stuff to show off, and luckily we were able to grab a few videos.

First up is a chainable Nixie module. [Ian], like all gurus of his caliber, had a box full of Nixie tubes waiting to be used in a project. These tubes never quite made it into their planned projects, mostly due to the difficulty of getting these old Nixies working. To remedy this problem, [Ian] created a chainable Nixie tube module – just hook up a high voltage supply to the board, connect it to the microcontroller of your choice, and you’ve got 2 Nixie tubes for your project.

[Ian] also showed off an ingenious solution to one of every maker’s problems. After designing a few cool boards like the Bus Pirate, Flash Destroyer, and Logic Sniffer, he realized he never made two boards that were the same size. This meant it was nigh impossible to have a standardized set of cases for his (and other maker’s) projects. The result is the Sick of Beige standard for electronics projects.

This standard provides PCB layouts in both square and golden rectangle formats complete with mounting holes, radiused corners, keepout areas, and suggested placement locations for USB ports and SD cards. The idea behind Sick of Beige is to get makers and fabbers using the same board dimensions so a set of standardized cases can be constructed. It’s an awesome idea and something we highly recommend for your next project.

Videos after the break.   Continue reading “Checking In With [Ian] From Dangerous Prototypes”

LEGO Record Player

Some people claim that the sound of vinyl is superior to digital playback. While this hack wont win any awards for audio quality, [Ryan]’s LEGO Record Player is a unique use of one of our favorite toys. Most of the components including the tone arm, counterweight, and base, are built entirely of LEGO. A large gear from an educational construction set is used for the platter. Unfortunately, the rotation isn’t terribly smooth, and the playback is rather distorted.

The turntable uses a standard cartridge and stylus, which should allow it to be connected to any receiver with a phono preamplifier. Using these off the shelf parts, it’s possible to build the mechanical components a turntable out of a variety of things. As the video demonstrates, getting the platter to turn correctly is a bit of a challenge.

Check out a video of the wobbly playback featuring Cindy and Bert after the break.

Via Make

Continue reading “LEGO Record Player”