20,000 Hackers

20k-hackers

What a pleasant thing to wake up and realize that we now have more than 20,000 Hackers on Hackaday.io. It wasn’t even two months ago that we celebrated passing the 10k mark. While we’re talking numbers, how about 2,075 projects, and 148 hackerspaces?

But what’s in a number? It’s what this stands for that really gets us excited! You took the leap and decided to show off what you’re working on while you’re still working on it. This is the key to pollinating ideas. One concept can result in many awesome spin-off projects. So if you haven’t yet written about that killer idea bouncing around in your head, do it now and be the inspiration for the next iteration of amazing hacks.

Much more to come

Our crew has been refining an overhaul of how the feed works to make it easier to know when and how your favorite hackers are updating their builds. You should see that functionality live in August. We’re also working on improving interactivity so that you can better find others with similar interests whether it’s just for casual conversation or to undertake an epic build as a team.

We’re certainly not above pointing out our own weaknesses. The Stack never took off. The idea seemed like a good one, but we need your help figuring out how to make it shine. Leave a comment below telling us what you think The Stack should be and how you think it should work.

A Lesson In Blind Reverse Engineering – Signals Intelligence

spread sheet of binary data

In a fit of desperation, I turned to data mining tools and algorithms, but stepped back from the horror of that unspeakable knowledge before my mind was shattered. That way madness lies.

–[Rory O’hare]

Wise words. Wise words, indeed. Who among us hasn’t sat staring into the abyss of seemingly endless data without the slightest clue to what it means or even how to go about figuring out what it means? To literally feel the brain damage seeping in as you start to see ‘ones’ and ‘zeros’ reach out to you from every day electronic devices…like some ghost in the wires. But do not fear, wise hacker! For we have good news to report! [Rory O’hare] has dived into this very abyss, and has emerged successful.

While others were out and about playing games and doing whatever non-hackers do to entertain themselves, [Rory O’hare] decided to reach out and grab some random wireless signals for a little fun and excitement. And what he found was not just a strong, repeating signal at 433Mhz. Not just a signal that oozed with evidence of ASK. What he found was a challenge…a mystery that was begging to be solved. A way to test his skill set. Could he reverse engineer a signal by just looking at the signal alone? Read on, and find out.

 

 

 

tachtastic diy tachometer

Fantastic Tach Is Strangely Called Tachtastic

We all have projects from yesteryear that we wish had been documented better. [EjaadTech] is fighting back by creating a project page about a tachometer he built 3 years ago while in college. He’s done a great write-up documenting all the steps from bread-boarding to testing to finished project. All of the code necessary for this tachometer is available too, just in case you’d like to make one yourself.

At the heart of the project is an AVR ATMega8 chip that performs the calculations and controls the LCD output screen that displays both the immediate RPM as well as the average. To hold everything together, [EjaadTech] etched his own custom PCB board that we must say looks pretty good. In addition to holding all the necessary components, there is also an ISP connector for programming and re-programming.

There are two attachment options for sensing the RPM. One is a beam-break style where the IR emitter is on one side of the object and the receiver is on the other. This type of sensor would work well with something like a fan, where the blades would break the IR beam as they passed by. Then other attachment has the IR emitter and receiver on one board mounted next to each other. The emitter continually sends out a signal and the receiver counts how often it sees a reflection. This works for rotating objects such as shafts where there would not be a regular break in the IR beam. For this reflective-based setup to work there would have to be a small piece of reflective tape on the shaft providing a once-per-revolution reflection point. Notice the use of female headers to block any stray IR beams from causing an inaccurate reading… simple and effective.

Basement-cooled AC

Zero-Dollar AC System Looks Funny But Works Well

Summer is here and with summer comes hot days. You probably know that us humans get uncomfortable if the temperature rises too much. Sure, we could turn on the loud and inefficient window AC unit and try to stay mildly comfortable while the electric company pick-pockets pennies from our change purse, but what is the fun in that? [Fran] had a better idea.

He noticed that his basement was always in the upper 50°F range regardless of how hot it was outside. He wanted the cool basement air to reside upstairs in the living area. After thinking long and hard about it he decided that a box fan and two long, skinny cardboard boxes assembled together would be enough to move the required amount of air. Both the fan and boxes were kicking around the house so was no cost and no risk to try this out. Continue reading “Zero-Dollar AC System Looks Funny But Works Well”

Fishing For Radio Signals With The Moxon Antenna

mox-antenna

[Bill Meara] has finished his latest project, a Moxon antenna for HF on 17 meters. [Bill] is well-known here on Hackaday. When not building awesome radios, he can be found ranting about ham radio. His new antenna turned out to be a true hack. He even used a hacksaw to build it!

The Moxon antenna is named for the late [Les Moxon, G6XN] who first described it in “Two-Element Driven Arrays”, a QST magazine article published in July of 1952.  [Bill] built his Moxon loosely based on [Jim/AE6AC’s] excellent instructions. The design is incredibly simple – a two element directional antenna using crappie fishing poles as spreaders. That’s crappie as in the fish, not the quality of the pole. Crappie poles are typically made up of telescoping sections of graphite or fiberglass  in common lengths of 14, 16, and 20 feet. The poles can be bought for under $20 at sporting goods stores. [Bill] used 16 foot poles purchased from Amazon.

The antenna is created by connecting all four poles at their bases in an X shape. The wire elements are stretched across the ends of the poles. The entire antenna bends up as the stiff poles hold the driven and reflector elements in tension. [Bill] used some scrap wood and U-bolts to attach the fishing poles, and bungee cord ends at the tips. Since the antenna is directional, [Bill] added a TV antenna rotor to spin the beam around. The antenna is so light that one could get by with a couple of cords and the “Armstrong method” of antenna rotation.

Once up on the roof, [Bill] found his antenna really performed. He was easily able to cross the Atlantic from his Northern Virginia home to France, Belgium, and Latvia. The mostly horizontal antenna makes it a bit more unobtrusive than other directional designs. [Bill] mentions that his neighbors haven’t revolted yet, so he’s continuing to enjoy the fruits of his antenna labors.

Red Bull Creation Winners: Maker Twins

This year’s Red Bull Creation theme “Reinvent the Wheel” was pretty broad, but the Maker Twins managed to incorporate it quite closely with their winning project which was completed in under 72 hours. They took the idea of urban farming and figured out one way to make farmer’s markets more feasible by helping to eliminate waste and spruce up the presentation of the produce.

The project amounts to a Ferris wheel. Instead of passenger compartments there are modular crates which are built with one wooden pallet each. The wheel itself is chain-driven and allows the system to track where each crate is in the rotation. This data is leveraged for a couple of different uses. One lets the customer select their produce on a tablet app and the crate will rotate into position so they may pick the individual items they want. The machine will also take care of automated watering to ensure the produce on display doesn’t get dried out. The icing on the cake is a separate station for washing and cutting the purchased veggies.

Thank you to Maker Twins for contributing some demonstration “b-roll” for use in this video.

Hacked E-cigarette Vaporizer Can Send Smells…in Space!

IMG_20140717_143831_173

This 3D printed scent distributor was put together by eight people from three states during the 2014 NYC NASA Space Apps Challenge. The team went on to take 1st place in the competition.

The project is called Senti8 and uses a FLORA Arduino micro-controller and a Neopixel LED strip purchased from Adafruit. A smartphone mobile app then remotely connects to the device allowing the user to choose which scent they would like to send to their friend, who is also wearing one of the wristbands.

They came up with the idea by simply asking an American astronaut named [Doug Wheelock] what he missed the most while travelling through the boundless reaches of outer space. To their surprise, he said that the thing he missed the most was his sense of smell.

Originally, the project was envisioned to be a wearable technology for space tourism. But over time, the project morphed into a wristband that would allow people to remember places or planets visited. Even memories unique to those places through scent could be experimented with.

One of the team members, [Brooks], was spotted wearing the Senti8 at the Wearable Tech LA conference in Pasadena, CA on July 17, 2014. The LED lights lining the outside could be seen all the way across the large auditorium as she chatted up with local Crashspace members as they prepared to present their design-oriented hacks to the public.

She gave an interview demoing the wristband which can be seen in the video posted below:

Continue reading “Hacked E-cigarette Vaporizer Can Send Smells…in Space!”