We see more than our fair share of nixie clocks here at Hackaday, and it’s nice to encounter one that packs some clever features. [VGC] designed his nixie tube clock to use minimal energy to operate: it needs only 5V via USB to work, and draws a mere 200 mA. Nixies require Soviet-approved 180v to trigger, so [VGC] used dynamic indication and a step-up voltage converter to run them, with a 74141 nixie decoder doing the heavy lifting.
The brains of the project is an ESP8266, which connects to his house’s WiFi automatically. The clock simply dials into an NTP server and sets its own time, so no RTC is needed. It also can communicate with the cloud via Telegram, allowing the clock to send alerts to [VGC]’s devices. The ESP’s firmware may likewise be updated over WiFi. The 3D-printed case and flashing second indicators are nice touches on top of the clock functionality.
The mechanical and electronic parts of a 3D printer are critical for success, but so is the slicing software. Slic3r and Cura are arguably the most popular, and how they command your printer has a lot to do with the results you can get. There are lots of other slicers out there both free and paid, but it is hard to really dig into each one of them to see if they are really better than whatever you are using today. If you are interested in the performance of IceSL — a free slicer for Windows and Linux — [DIY3DTECH] has a video review that can help you decide if you want to try it. You can see the video below.
IceSL has several modules and can actually do OpenSCAD-like modeling in Lua so you could — in theory — do everything in this one tool. The review, though, focuses only on the slicing aspect. In addition to the desktop client versions, you can use some features online (although on our Linux machine it didn’t work with the latest Chrome beta even with no add ons; Firefox worked great, though).
Never underestimate the power of an incompressible fluid at high pressure. Properly constrained and with a full understanding of the forces involved, hydraulic pressure can be harnessed to do some interesting things in the home shop, like hydroforming stainless steel into custom motorcycle parts.
From the look of [Clarence Elias]’s video below, it seems like he has a 100% custom motorcycle build going on in his shop. That means making every part, including the reflectors for the lights. While he certainly could have used a traditional approach, like beating sheet stainless with a planishing hammer or subjecting it to the dreaded English wheel, [Clarence] built a simple yet sturdy hydroforming die for the job. A thick steel ring clamps the sheet stainless to a basal platen with an inlet from the forming fluid, which is ordinary grease. [Clarence] goes through the math and the numbers are impressive — a 1,500-psi grease gun can be mighty persuasive under such circumstances. The result is a perfectly formed dish with no tool marks, in need of only a little polishing to be put into service.
For the last eight months, Hackaday has been running the greatest hardware competition on Earth. The Hackaday Prize is a challenge to Build Something That Matters, make an impact, and create the hardware that will transform the world. These projects range from reliable utensils for the disabled, a way to clean drinking water for rural villages, refreshable Braille displays, and even a few high voltage Tesla coil hats. The Hackaday Prize is the preeminent hardware hackathon with a goal of making the world a better place, and this weekend we’re going to see the fruits of everyone’s labor.
Over the last few weeks, our fantastic team of judges have been combing over the finalists in the Hackaday Prize. We’ve put together this video roundup with judges discussing the top ten finishers:
These ten projects are the best the Hackaday Prize has to offer, and one of these projects will walk away with the Grand Prize of $50,000 USD. The second, third, fourth, and fifth place winners will take away $20,000, $15,000, $10,000 and $5,000, respectively. The top ten projects in the Hackaday Prize are, in no particular order:
The Hackaday Prize isn’t just about finding the best projects. We’re also looking for the best products. For that, the Hackaday Prize includes a Best Product award. This promises to awaken the hardware entrepreneurs to build a manufacturable thing that will shake up an industry. Here’s an overview of the five top finishers in the Best Product Category:
From a field of the twenty best product finalists entered into the Hackaday Prize our fantastic panel of judges have winnowed these down to five incredible finalists. They are, in no particular order:
The winner of the Best Product competition will walk away with $30,000 USD and an opportunity to interview for a residency at the Supplyframe Design Lab. Here, the hackers behind the Best Product will have a materials budget, mentoring, and access to some world-class tools that will enable them to turn their prototype into a real product.
These are the best projects and products the 2017 Hackaday Prize has to offer, and we couldn’t ask for more. Watch live as the Hackaday Prize is awarded tomorrow at 6:30pm Pacific. It’s going to be a blast, and a few lucky projects will take away a pile of prize money and the respect of their peers. It really doesn’t get better than that.
Who wouldn’t like to have a crystal ball? Unfortunately, our computers aren’t very good at predicting the future. However they do occasionally get the weather correct, so [Jenny Hanell] built a crystal ball to show the weather forecast. She calls it “Sphaera” and you can see a video of it in operation below.
The user interface is entertaining, and relies on 5 photoresistors. The Raspberry Pi inside detects when you cover one of them up, and interprets that as a command. A piece of plastic allows for projection inside the sphere from an LCD display. [Jenny] calls that a hologram although technically it isn’t a true hologram, of course.
My basement workshop is so crammed full of stuff I literally can’t use it. My workbench, a sturdy hardwood library table, is covered in junk to the point that I couldn’t find a square foot that didn’t have two layers of detritus on it — the top layer is big things like old projects that no longer work, boxes of stuff, fragile but light things perched on top. Underneath is the magma of bent resistors, snippets of LED strip, #4 screws, mystery fasteners I’ll never use, purple circuit boards from old versions of projects, and a surprising number of SparkFun and Adafruit breakouts that have filtered down from higher up in the heap.
When work on something I bring the parts up to the dining room and work on the table, which is great for many reasons — more space, better light, and superior noms access top the list. The down side is that I don’t devote any time to making my real shop into a viable working place, and it becomes a cluttered store room by default.
I am therefore focusing on a four-part plan to reclaim my work space from heaps of junk.
You can tell a lot about a person by the company they keep, and you can tell a lot about a craftsman by the tools and jigs he or she builds. Whether for one-off jobs or long-term use, these ad hoc tools, like this tubing rotator for a welding shop, help deliver results beyond the ordinary.
What we appreciate about [Delrin]’s tool is not how complex it is — with just a motor from an old satellite dish and a couple of scooter wheels, it’s anything but complicated. What we like is that to fabricate some steering links, each of which required three passes of TIG welding to attach a threaded bung to the end of a rod, [Delrin] took the time to build just the tool for the job. The tools slowly rotates the rod, letting the welder keep the torch in one position as the workpiece moves under it. The grounding method is also simple but clever — just a wide strap of braid draped over the rod. The result is some of the prettiest and most consistent welds we’ve seen in a while, and with an order for 28 steering links, it ought to be a huge time saver.
It may be time for a little more TIG welding love around here. Sure, we’ve covered the basics of oxy-acetylene welding, and even talked about brazing aluminum. Perhaps your humble Hackaday writer will take the plunge into a new TIG welder and report from a newbie’s perspective. You know, for science.