Shop-Made Fixture Turns Out Dream Welds

You can tell a lot about a person by the company they keep, and you can tell a lot about a craftsman by the tools and jigs he or she builds. Whether for one-off jobs or long-term use, these ad hoc tools, like this tubing rotator for a welding shop, help deliver results beyond the ordinary.

What we appreciate about [Delrin]’s tool is not how complex it is — with just a motor from an old satellite dish and a couple of scooter wheels, it’s anything but complicated. What we like is that to fabricate some steering links, each of which required three passes of TIG welding to attach a threaded bung to the end of a rod, [Delrin] took the time to build just the tool for the job. The tools slowly rotates the rod, letting the welder keep the torch in one position as the workpiece moves under it. The grounding method is also simple but clever — just a wide strap of braid draped over the rod. The result is some of the prettiest and most consistent welds we’ve seen in a while, and with an order for 28 steering links, it ought to be a huge time saver.

It may be time for a little more TIG welding love around here. Sure, we’ve covered the basics of oxy-acetylene welding, and even talked about brazing aluminum. Perhaps your humble Hackaday writer will take the plunge into a new TIG welder and report from a newbie’s perspective. You know, for science.

[via r/welding]

Improving your welder without a microcontroller

We’re always impressed when a piece of hardware is torn apart, rebuilt and ends up exceeding the capabilities of the original device. [Dave] and [Will]’s home-built TIG welder is no exception to that rule.

When [Dave] and [Will] started working on converting a simple AC stick welder to a welder with every function imaginable, they decided to keep it simple. After looking at some high-price commercial welders they came up with a list of features they wanted to have and decided to implement this in TTL and CMOS logic. The guys didn’t want to go with a microcontroller solution because not everyone can code, and discrete chips are very easy to troubleshoot given minimal tools.

For the high voltage part of the build, the original flyback transformer was replaced with a neon sign transformer and homebrew spark gap and capacitor. The plans for a homebrew spark gap and cap didn’t quite work out so they were replaced with commercial units. The guys included schematics and a PCB layout (PDF warning) of their build. It’s always great to see an amazing logic chip build, and improving an existing tool never hurts.

Thanks to [Franci] for sending this one in.

High frequency start box

start_box

When welding with an AC arc welder, it is often necessary to “scratch start” them to get the arc going. For those unfamiliar, it is just like it sounds. You drag the head across something just like a giant match. There are some that come with an arc stabilizer or “high frequency starter”. This is preferred, but they can be hard to find. [Bill] shows us how to make one of our own. Though you may have an easy enough time finding a big transformer, you might run into some difficulty finding the capacitors, and tungsten spark gaps. If you manage to get your hands on them, you can follow [Bill]’s schematic and build one of these starters for yourself.