This Week In Security: WebP, Cavium, Gitlab, And Asahi Lina

Last week we covered the latest 0-day from NSO group, BLASTPASS. There’s more details about exactly how that works, and a bit of a worrying revelation for Android users. One of the vulnerabilities used was CVE-2023-41064, a buffer overflow in the ImageIO library. The details have not been confirmed, but the timing suggests that this is the same bug as CVE-2023-4863, a Webp 0-day flaw in Chrome that is known to be exploited in the wild.

The problem seems to be an Out Of Bounds write in the BuildHuffmanTable() function of libwebp. And to understand that, we have to understand libwebp does, and what a Huffman Table has to do with it. The first is easy. Webp is Google’s pet image format, potentially replacing JPEG, PNG, and GIF. It supports lossy and lossless compression, and the compression format for lossless images uses Huffman coding among other techniques. And hence, we have a Huffman table, a building block in the image compression and decompression.

What’s particularly fun about this compression technique is that the image includes not just Huffman compressed data, but also a table of statistical data needed for decompression. The table is rather large, so it gets Huffman compressed too. It turns out, there can be multiple layers of this compression format, which makes the vulnerability particularly challenging to reverse-engineer. The vulnerability is when the pre-allocated buffer isn’t big enough to hold one of these decompressed Huffman tables, and it turns out that the way to do that is to make maximum-size tables for the outer layers, and then malform the last one. In this configuration, it can write out of bounds before the final consistency check.

An interesting note is that as one of Google’s C libraries, this is an extensively fuzzed codebase. While fuzzing and code coverage are both great, neither is guaranteed to find vulnerabilities, particularly well hidden ones like this one. And on that note, this vulnerability is present in Android, and the fix is likely going to wait til the October security update. And who knows where else this bug is lurking. Continue reading “This Week In Security: WebP, Cavium, Gitlab, And Asahi Lina”

WhisperFrame Depicts The Art Of Conversation

At this point, you gotta figure that you’re at least being listened to almost everywhere you go, whether it be a home assistant or your very own phone. So why not roll with the punches and turn lemons into something like a still life of lemons that’s a bit wonky? What we mean is, why not take our conversations and use AI to turn them into art? That’s the idea behind this next-generation digital photo frame created by [TheMorehavoc].
Essentially, it uses a Raspberry Pi and a Respeaker four-mic array to listen to conversations in the room. It listens and records 15-20 seconds of audio, and sends that to the OpenWhisper API to generate a transcript.
This repeats until five minutes of audio is collected, then the entire transcript is sent through GPT-4 to extract an image prompt from a single topic in the conversation. Then, that prompt is shipped off to Stable Diffusion to get an image to be displayed on the screen. As you can imagine, the images generated run the gamut from really weird to really awesome.

The natural lulls in conversation presented a bit of a problem in that the transcription was still generating during silences, presumably because of ambient noise. The answer was in voice activity detection software that gives a probability that a voice is present.

Naturally, people were curious about the prompts for the images, so [TheMorehavoc] made a little gallery sign with a MagTag that uses Adafruit.io as the MQTT broker. Build video is up after the break, and you can check out the images here (warning, some are NSFW).

Continue reading “WhisperFrame Depicts The Art Of Conversation”

Mosquito Laser Death Grid Is Just What It Sounds Like

Mosquitoes suck. Quite literally. [Allen Pan] lives in an area where they’re so thick in the air, regular methods of killing them fail to put a dent in their numbers. Thus, he set about building a solution so dangerous we wouldn’t want to be within a mile when it’s turned on. 

[Allen] was inspired by a TED talk from over a decade ago that involved targeting flying mosquitoes with high-powered scanning lasers. This technology never really came to fruition, and raised many questions about laser safety and effectiveness.

Testing the idea with only two mirrors installed.

This solution keeps the lasers, but goes a slightly different route — two 10-watt lasers bounced between multiple mirrors to create a laser death grid. It goes without saying that 10 watt lasers will blind you near instantly even at great range, and can burn skin and cause all manner of other horrors. Bouncing them around with mirrors and waving them about at mosquitoes is a really poor idea when even incidental exposure can do real harm.

Indeed, the laser is so powerful that it burns holes in the mirrors [Allen] used in early testing. It was around this time that [styropyro] was brought in to help ensure everyone involved got through the project with their eyesight intact.

[Allen]’s crew wears laser safety goggles when operating the horrifying handheld device, which mitigates some risk. The team also quickly notice beams escaping from various directions, due in part to the holes burned in their clothes. Electing to wrap the device in a heatproof blanket to avoid accidentally dazzling any nearby pilots was an obvious idea but turning the device off and destroying it would have been smarter.

Sadly, despite looking like the coolest cyberpunk weapon we’ve seen in years, the device doesn’t even kill mosquitoes very effectively. The bugs largely avoided the device, and only a few that flew directly into a beam ended up being cooked. The whole time watching the video, we feared someone dropping the rig, leading to a 10-watt beam bouncing off and striking some poor innocent bystander.

Powerful lasers are cool and useful things. Try and use them responsibly.

Continue reading “Mosquito Laser Death Grid Is Just What It Sounds Like”