Imagine this. A young person comes to you wanting to get started in the electronic hobby. They ask what five things should they buy to get started. Make your list. We’ll wait. We bet we can guess at least two of your items: a multimeter, and a soldering iron. [LearnElectroncsRepair] recently showed us a review of the Zotek Zoyi ZT-N2 which is a soldering iron and a multimeter in one unit. You can watch the video review below.
Honestly, when we heard about this, we didn’t think much of the combination. It doesn’t seem like having your probe get red hot is a feature. However, the probe tip replaces the soldering iron tip, so you are either soldering or measuring, but not both at the same time.
It’s with sadness that we note the passing of Thomas E. Kurtz, on November 12th. He was co-inventor of the BASIC programming language back in the 1960s, and though his creation may not receive the attention in 2024 that it would have done in 1984, the legacy of his work lives on in the generation of technologists who gained their first taste of computer programming through it.
The origins of BASIC lie in the Dartmouth Timesharing System, like similar timesharing operating systems of the day, designed to allow the resources of a single computer to be shared across many terminals. In this case the computer was at Dartmouth College, and BASIC was designed to be a language with which software could be written by average students who perhaps didn’t have a computing background. In the decade that followed it proved ideal for the new microcomputers, and few were the home computers of the era which didn’t boot into some form of BASIC interpreter. Kurtz continued his work as a distinguished academic and educator until his retirement in 1993, but throughout he remained as the guiding hand of the language.
Should you ask a computer scientist their views on BASIC, you’ll undoubtedly hear about its shortcomings, and no doubt mention will be made of the GOTO statement and how it makes larger projects very difficult to write. This is all true, but at the same time it misses the point of it being a readily understandable language for first-time users of machines with very little in the way of resources. It was the perfect programming start for a 1970s or 1980s beginner, and once its limitations had been reached it provided the impetus for a move to higher things. We’ve not written a serious BASIC program in over three decades, but we’re indebted to Thomas Kurtz and his collaborator for what they gave us.
We’ll be honest. Measuring Forth words per second doesn’t seem like a great benchmark since a Forth word could be very simple or quite complex. But we think the real meaning is “up to 400 million words per second.” There was a time when that level of performance would take a huge computer. These days, a simple board that costs a few bucks can do the trick, according to [Peter Forth] in an online presentation.
The key is the use of the Milk V Duo and some similar boards. Some of these look similar to a Raspberry Pi Pico. However, this chip on board has two RISC V cores, an ARM core, and an 8051. There’s also an accelerator coprocessor for vector operations like AI or video applications.
When Apple recently announced the hearing aid feature on their new AirPods Pro 2, it got the attention of quite a few people. Among these were [Rithwik Jayasimha] and friends, with [Rithwik] getting a pair together with his dad for use by his hard-of-hearing grandmother. That’s when he found out that this feature is effectively limited to the US and a small number of other countries due them being ‘regulated health features’, per Apple. With India not being on the approved countries list and with no interest in official approval legalities, [Rithwik] set to work to devise a way to bypass this restriction.
As noted in the blog post, the primary reason for using AirPods here instead of official hearing aids is due to the cost of the latter, which makes them a steal for anyone who is dealing with mild to moderate hearing loss. Following the official Hearing Aid feature setup instructions requires that your location is detected as being in an approved country. If it is, the Health App (on iOS 18.1) will popup a ‘Get Started’ screen. The challenge was thus to make the iOS device believe that it was actually in the FDA-blessed US and not India.
Merely spoofing the location and locale didn’t work, so the next step was to put the iOS device into a Faraday cage along with an ESP32 that broadcast California-based WiFi SSIDs. Once the thus treated iPad rebooted into the US, it could be used to enable the hearing aid feature. Next [Rithwik] and friends created a more streamlined setup and procedure to make it possible for others to replicate this feat.
As also noted in the blog post, the Hearing Aid feature is essentially a specially tuned Transparency mode preset, which is why using AirPods for this feature has been a thing for a while, but with this preset it’s much better tuned for cases of hearing loss.
In the iconic 1990s TV series The X Files, David Duchovny’s FBI agent-paranormal investigator Fox Mulder has a poster on his office wall. It shows a flying saucer in flight, with the slogan “I Want To Believe”. It perfectly sums up the dilemma the character faces. And while I’m guessing that only a few Hackaday readers have gone down the full lizard-people rabbit hole, wanting to believe is probably something that a lot of us who love sci-fi understand. It would be a fascinating event for science if a real extraterrestrial craft would show up, so of course we want to believe to some extent, even if we’re not seriously expecting it to appear in a Midwestern cornfield and break out the probes any time soon.
By All Means Believe. But Don’t Wreck Your Career
Outside the realm of TV drama and science fiction it’s a sentiment that also applies in more credible situations. Back at the end of the 1980s for example when so-called cold fusion became a global story it seemed as though we might be on the verge of the Holy Grail of clean energy breakthroughs. Sadly we never got our Mr. Fusion to power our DeLorean, and the scientific proof was revealed to be on very weak foundations. The careers of the two researchers involved were irreparably damaged, and the entire field became a byword for junk science. A more recently story in a similar vein is the EM drive, a theoretical reactionless force generator that was promising enough at one point that even NASA performed some research on it. Sadly there were no magic engines forthcoming, so while it was worth reporting on the initial excitement, we’re guessing the story won’t come back.
When evaluating a scientific or technical breakthrough that seems as miraculous as it is unexpected then, of course we all want to believe. We evaluate based on the information we have in front of us though, and we all have a credibility pyramid. There’s nothing wrong with having an interest in fields that are more hope than delivery, indeed almost every technology that powers our world will at some time have to overcome skepticism in its gestation period. Perhaps it’s best to say that it’s okay to have hope, but hope shouldn’t override our scrutiny of the proof. Of course I want a perpetual motion machine, who wouldn’t, but as a fictional engineer once allegedly said, “Ye cannae change the laws of physics”. Continue reading “I Want To Believe: How To Make Technology Value Judgements”→
In this episode you’ll get to hear not one, not two, but three Hackaday Editors! Now that the dust has mostly settled from the 2024 Hackaday Supercon, Al Williams joins Elliot and Tom to compare notes and pick out a few highlights from the event. But before that, the week’s discussion will cover the questionable patents holding back a promising feature for desktop 3D printers, a new digital book from NODE, and the surprisingly limited history of welding in space. You’ll also hear about the challenge of commercializing free and open source software, the finicky optics of the James Web Space Telescope, and the once exciting prospect of distributing software via pages of printed barcodes.
This week starts off with examinations of a couple hardware attacks that you might have considered impractical. Take a Ball Grid Array (BGA) NAND removal attack, for instance. The idea is that a NAND chip might contain useful information in the form of firmware or hard-coded secrets.
The question is whether a BGA desolder job puts this sort of approach out of the reach of most attackers. Now, this is Hackaday. We regularly cover how our readers do BGA solder jobs, so it should come as no surprise to us that less than two-hundred Euro worth of tools, and a little know-how and bravery, was all it took to extract this chip. Plop it onto a pogo-pin equipped reader, use some sketchy Windows software, and boom you’ve got firmware.
What exactly to do with that firmware access is a little less straightforward. If the firmware is unencrypted and there’s not a cryptographic signature, then you can just modify the firmware. Many devices include signature checking at boot, so that limits the attack to finding vulnerabilities and searching for embedded secrets. And then worst case, some platforms use entirely encrypted firmware. That means there’s another challenge, of either recovering the key, or finding a weakness in the encryption scheme. Continue reading “This Week In Security: Hardware Attacks, IoT Security, And More”→