Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The KiCad Plugin

A low-profile split keyboard with a sliding, round track pad on each half.
Image by [fata1err0r81] via reddit
The most striking feature of the Tenshi keyboard has to be those dual track pads. But then you notice that [fata1err0r81] managed to sneak in two extra thumb keys on the left, and that those are tilted for comfort and ease of actuation.

The name Tenshi means ‘angel’ in Japanese, and creator [fata1err0r81] says that the track pads are the halos. Each one slides on a cool 3D-printed track that’s shaped like a half dovetail joint, which you can see it closer in this picture.

Tenshi uses a pair of RP2040 Zeros as controllers and runs QMK firmware. The track pads are 40 mm each and come from Cirque. While the Cirques have been integrated into QMK, the pull request for ZMK has yet to be merged in. And about those angled keys — [fata1err0r81] says they tried risers, but the tilting feels like less effort. Makes total sense to me, but then again I’m used to a whole keyboard full of tilted keys.

Continue reading “Keebin’ With Kristina: The One With The KiCad Plugin”

French acrobatic artist [Bastien Dausse] flies around on an impressive anti-gravity device he created.

Low-Gravity Playground Looks Highly Entertaining (and Useful)

With US astronauts scheduled to return to the Moon in 2026, it might be nice for them to really and truly know ahead of time what the gravity situation is going to be like. At 1/6th Earth’s gravity, the difference can be difficult to simulate.

But not anymore. French acrobatic artist [Bastien Dausse] has created a contraption that does exactly that. [Dausse] straps himself in, and is instantly able to slowly sproing about, up and down and all around in semi-slow motion, using this device which is calibrated to the Moon’s gravity. [Dausse]’s troupe’s performances center on the idea of gravity and of subverting it.

In order to achieve this effect, the swooping sculpture uses a pair of large counterweights. Check out the video below to see how they too become part of the action during a captivating duet performance. Although not attached, part of the device is a disk on which it smoothly moves around. It looks really fun, and more than a little bit dangerous. But mostly fun.

Did you know that Da Vinci created several experiments dedicated to determining the properties of gravity?

Continue reading “Low-Gravity Playground Looks Highly Entertaining (and Useful)”

Hackaday Podcast Episode 281: Metal Clay, Desiccants, Silica Gel, And Keeping Filament Dry

This week on the Podcast, it’s Kristina’s turn to bloviate alongside Editor-in-Chief Elliot Williams. First up in the news: our fresh new contest has drawn three entries already! That’s right, the 2024 Tiny Games Challenge is underway. You have until September 10th to show us your best tiny game, whether that means tiny hardware, tiny code, or a tiny BOM.

Then it’s on to What’s That Sound, which sounded familiar to Kristina, but she couldn’t place it. Can you get it? Can you figure it out? Can you guess what’s making that sound? If you can, and your number comes up, you get a special Hackaday Podcast t-shirt.

Then it’s on to the hacks, beginning with a hack to print metal and a way to weld wood, along with a photo-resistor-based, single-pixel camera. We’ll talk desiccants carbon fiber, and Baron Harkonnen. Finally, we discuss the troubles of keeping hygroscopic materials from degrading, and have a klatch about Keebin’ with Kristina.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download and savor at your leisure.

Continue reading “Hackaday Podcast Episode 281: Metal Clay, Desiccants, Silica Gel, And Keeping Filament Dry”

A 3D-printed puzzle for the visually impaired. The pieces have both a texture and a slant.

A Puzzle For The Visually Impaired, Or Blindfolded

There’s no reason why a visually impaired person can’t enjoy putting together a jigsaw puzzle. It just needs to look a little different. Or, in this case, feel different.

16-year-old [feazellecw] has come up with just the solution — a puzzle with pieces that have both a defining texture and a slant in the z-height to them. While there is no picture on the puzzle face to speak of, instead there is a satisfying end result. You could change it up and add a relief image if you wanted, as long as you still observed the diagonal lines, the z-slant, and the little hole in the bottom that helps differentiate it from the top.

As [feazellecw] says, it’s important to find a box to help keep the pieces together during assembly; a 3D-printed box would be a nice touch. Files for this 15-piece puzzle are available if you’d like to make one for yourself or someone else, but just the idea might inspire you to make your own variant.

Don’t like putting puzzles together? Build a robot to do it for you.

Lab-grown diamonds in 'cake' form -- before they are processed and polished.

Is It Time For Synthetic Diamonds To Shine?

The process of creating a diamond naturally takes between 1 and 3.3 billion years. Conversely, a lab-grown diamond can now be created in 150 minutes. But despite being an ethical and environmentally-friendly alternative to the real thing, the value of lab-grown diamonds has plummeted in recent years. Manufacturers are doing various things to battle the stigma and increase their value by being carbon neutral and using recycled metals.

About halfway through is where this article gets really interesting. Swiss jeweler LOEV has partnered with lab growers Ammil to produce a line of Swiss-made jewelry by relying on renewable energy sources. 90% comes from hydroelectric power, and the rest comes from solar and biomass generation. Now, on to the process itself.

A lab-grown diamond 'cake' before the excess carbon is lasered away.
You can have your cake and heat it, too.

Growing a diamond starts with a seed — a thin wafer of diamond laser-shaved off of an existing stone, and this is placed in a vacuum chamber and subjected to hydrocarbon gas, high heat (900 to 1200 °C), and pressure.

Then, a microwave beam induces carbon to condense and form a plasma cloud, which crystallizes and forms diamonds. The result is called a ‘cake’ — a couple of diamond blocks. The excess carbon is lasered away, then the cake is processed and polished. This is known as the chemical vapor deposition method (CVD).

There is another method of growing diamonds in a lab, and that’s known as the high-pressure, high-temperature (HPHT) method. Here, a small bit of natural diamond is used to seed a chamber filled with carbon, which is then subjected to high pressure and temperatures. The carbon crystallizes around the seed and grows around a millimeter each day.

As the industry evolves, lab-grown diamonds present a sustainable alternative to natural diamonds. But the consumer is always in charge.

Once you’ve got a stone, what then? Just use 3D printing to help create the ring and setting.

A fast-looking hand plays a reaction time game.

2024 Tiny Games Challenge: Improving Reaction Time

What lies at the heart of many games? In a sense, it’s your response time, which is a function of hand-eye coordination. Although the 2024 Business Card Challenge has come to a close, [gokux] tends to go small anyway, and has taken their miniature approach to the Tiny Games Challenge with this awesome little reaction time game.

It’s basically whack-a-mole, but instead of striking down fuzzy puppets, you get fast and furious on big buttons that light up. Press any button to start, and there is a 3-2-1 countdown to get you geared up for action. Once the screen says ‘GO’, you’re off to the races. Each of the four buttons will light up in random order, and your overall response time is taken as the average of these four.

While there are many microcontrollers that would work here, [gokux] chose the Seeed Studio Xiao ESP32-C3. If you want to make one of these for yourself, there are excellent build instructions waiting for you. Be sure to check it out in action after the break. Oh, and be sure to let [gokux] know if you can beat 220 ms.

Continue reading “2024 Tiny Games Challenge: Improving Reaction Time”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Key Cap Map

So, [zyumbik]’s trademark seems to be sexing things up, and the Artsey layout did not escape their gaze. This is the Sexy Artsey. Let’s back up a bit.

A pink and purple 10-key keyboard with a rotary encoder, spikes, and a custom area with LEGO attached.
Image by [zyumbik] via reddit
Artsey is a keyboard layout for chording, and this keyboard is built for it. It’s a one-handed keyboard meant for pressing multiple keys at a time to produce each character. With some use, [zyumbik] discovered that the Taipo layout might be a better fit, so there are currently some elements of both.

If you’d like to make this adorable keyboard, everything is waiting for you to download, including files for various thingamabobs you can stick on the side there where the rainbow is now. There’s also a groovy flower version of the knob.

Controller-wise, you can use a Seeed Studio Xiao in either BLE or RP2040 format, or the Waveshare RP2040 Zero. The firmware is written in ZMK.

Remember the death metal macropad? (Who could forget that tentacled nightmare?) This is the same creator. Kind of hard to believe, innit? Well, except for the spikes. Apparently they’re for thumb discipline.

Via reddit

Continue reading “Keebin’ With Kristina: The One With The Key Cap Map”