The Magnetic Rubik’s Cube

Ernő Rubik has much to answer for when it comes to the legacy of his namesake cube. It has both enthralled and tormented generations, allowing some to grandstand in the playground while others are forced to admit defeat in the face of a seemingly intractable puzzle. It just so happens that [Tom Parker] has been working on a Rubik’s cube with a novel magnetic design.

Yes, that’s right – [Tom]’s cube eschews the traditional rotating and sliding mechanism of the original cube, instead replacing it all with magnets. Each segment of the cube, along with the hidden center piece, is 3D printed. Through using a fused deposition printer, and pausing the print at certain layers, it’s possible to embed the magnets inside the part during the printing process.

[Tom] provides several different versions of the parts, to suit printers of different capabilities. The final cube allows both regular Rubik’s cube movements, but also allows for the player to cheat and reassemble it without having to throw it forcefully against the wall first like the original toy.

It’s an interesting build, and a great one to get to grips with the techniques involved in embedding parts in 3D prints. It may not be capable of solving itself, but we’ve seen another build that can pull off that impressive feat. Video after the break.

Continue reading “The Magnetic Rubik’s Cube”

Always Have A Square to Spare

Some aspects of humanity affect all of us at some point in our lives. Whether it’s getting caught in the rain without an umbrella, getting a flat tire on the way to work, or upgrading a Linux package which somehow breaks the entire installation, some experiences are truly universal. Among these is pulling a few squares of toilet paper off the roll, only to have the entire roll unravel with an overly aggressive pull. It’s possible to employ a little technology so that none of us have to go through this hassle again, though.

[William Holden] and [Eric Strebel] have decided to tackle this problem with an innovative bearing of sorts that replaces a typical toilet paper holder. Embedded in the mechanism is a set of magnetic discs which provide a higher resistance than a normal roll holder would. Slowly pulling out squares of paper is possible, but like a non-Newtonian fluid becomes solid when a higher force is applied, the magnets will provide enough resistance when a higher speed tug is performed on the toilet paper. This causes the paper to tear rather than unspool the whole roll, and also allows the user to operate the toilet paper one-handed.

This is a great solution to a problem we’ve all faced but probably forgot about a minute after we experienced it. And, it also holds your cell phone to keep it from falling in the toilet! If you’d like to check out their Kickstarter, they are trying to raise money to bring the product to market. And, if you want to upgrade your toilet paper dispenser even further, there’s also an IoT device for it as well, of course.

Continue reading “Always Have A Square to Spare”

Both Explanation And Build For This Artwork Are Beautiful

Sometimes you encounter projects that defy description, as is the case with this one. So perhaps it’s best to start with what this project is NOT. It is not a sphere. It is not a perpetual energy device. It has neither a sloppy build nor a slapdash video. This IS a motorized rhombicuboctahedron that is a well-explained with high-quality parts and loving attention to detail by [Wolfram Glatthar]. At its heart is an exercise in building a moving device with the barest minimum of friction. Without no grinding in the mechanism, the electronics will probably wear out first. Low friction also means low power consumption, and an hour of sunlight can run the device for two-and-a-half days. Take a look at the video below the break.

Along the sides are a balancing ring with threaded screw sockets and the load-bearing magnets which suspend the bulk of the rhombicuboctahedron using repulsion. Everything is stabilized by a ceramic sphere touching a sapphire glass plate for a single point of contact between some seriously tough materials. The clear sapphire furthers the illusion that everything is floating, but genuine magnetic suspension would require much more power.

Acoustic levitation cannot be forgotten as another powered source of floating or you can cheat and use strobe light trickery.

Continue reading “Both Explanation And Build For This Artwork Are Beautiful”

Can Magnets Replace The Spring In A Pogo Stick?

Betteridge’s law of headlines states that any headline that ends in a question mark can be answered by the word ‘no’. It’s the case with articles asking if Millennials are responsible for all of the world’s ills, or if some technology is the future. So we come to this fascinating case of native content (amusing, veiled advertising) from a store that sells really, really powerful magnets. The title of the article asks if magnets can replace the spring in a pogo stick. The answer, of course, is no, but it does provide a fascinating look at linear versus exponential growth.

A pogo stick is simply a spring with a set of handles and footholds that is the subject of a great number of hilarious YouTube videos, at least one of which is impressive. The physics of a pogo stick is determined entirely by Hooke’s Law, and is a linear equation, not counting the strength of a spring and the yield point of steel, but this is a pogo stick we’re talking about. Magnets, on the other hand, obey the inverse square law. Is it possible to fit an exponential function to fit a linear function? No. No, it is not.

I refuse to believe this is the first use of the phrase, ‘immensely disappointing pogo stick’

But a lack of understanding of the basic forces of nature never stopped anyone, so the folks at K & J Magnetics made a really neat test. They printed out a 1/8th scale pogo stick, complete with a spring. It worked like any pogo stick would. Then they took out the spring and put a few magnets where the spring should go. How did that work? Well, it bottomed out and was an immensely disappointing pogo stick.

If a problem is worth solving, it’s worth solving wrongly, so more magnets were added. Mounting three magnets onto a pogo stick gave the same exponential force, but still not enough. Four, five, and six magnets were added to the model pogo stick, and while six magnets gave this model pogo enough force to be ‘bouncy’, there simply wasn’t enough space for the pogo stick to compress.

The takeaway from this experiment is extremely obvious in retrospect, but probably too subtle for a lot of people. There’s a difference between a linear relationship and and exponential relationship. There’s also a video, you can check that out below.

Continue reading “Can Magnets Replace The Spring In A Pogo Stick?”

Better 3D Printing through Magnets

Just like Goldilocks found some porridge too hot and some too cold, 3D printers often have beds that don’t stick well enough or stick too well. A few weeks ago I switched two of my three printers to use magnetic beds and thought I’d share with you how that worked out. Spoiler alert: like most things it has its plusses and minuses.

It isn’t a secret that 3D printing is not a plug-and-play operation, especially at the price most of us are willing to pay for printers. There are lots of variables to get right: temperature, speeds, bed leveling, and a bunch of other things. However, one of the things that vexes many people is the relationship between getting that first layer to stick and being able to get the print off the bed when you are done. It is hard to find a happy medium. If the first layer won’t stick, you print is doomed. If the first layer sticks too well, you are likely to damage the part or your fingers getting it removed. I switched to BuildTak surfaces long ago, and many people like PEI. But it is sometimes hard to get a big part removed. A few weeks ago, I took the plunge and bought some magnetic build surfaces for two of my printers. These were “no name” inexpensive affairs from Ali Express.

The idea is simple. There are two sheets that look like a rubberized plastic and have magnetic properties. One piece has some 3M adhesive on the back. The other has one surface that resembles BuildTak. Once you glue down the one sheet you leave it alone. Then you put the other sheet on top and print on it. When you are done, you can pull the sheet out and flex it to pop the print off. That’s the theory, anyway. Continue reading “Better 3D Printing through Magnets”

An Integrated Electromagnetic Lifting Module for Robots

The usual way a robot moves an object is by grabbing it with a gripper or using suction, but [Mile] believes that electromagnets offer a lot of advantages that are worth exploring, and has designed the ELM (Electromagnetic Lifting Module) in order to make experimenting with electromagnetic effectors more accessible. The ELM is much more than just a breakout board for an electromagnet; [Mile] has put a lot of work into making a module that is easy to interface with and use. ELM integrates a proximity sensor, power management, and LED lighting as well as 3D models for vertical or horizontal mounting. Early tests show that 220 mW are required to lift a 1 kg load, but it may be possible to manage power more efficiently by dynamically adjusting drive voltage depending on the actual load.

[Mile]’s focus on creating an easy to use, integrated solution that can be implemented easily by others is wonderful to see, and makes the ELM a great entry for The Hackaday Prize.

Beverage Holder of Science

The folks at [K&J Magnetics] have access to precise magnetometers, a wealth of knowledge from years of experience but when it comes to playing around with a silly project like a magnetic koozie, they go right to trial and error rather than simulations and calculations. Granted, this is the opposite of mission-critical.

Once the experimentation was over, they got down to explaining their results so we can learn more than just how to hold our beer on the side of a toolbox. They describe three factors related to magnetic holding in clear terms that are the meat and bones of this experiment. The first is that anything which comes between the magnet and surface should be thin. The second factor is that it should be grippy, not slippy. The final element is to account for the leverage of the beverage being suspended. Say that three times fast.

Magnets are so cool for anything from helping visualize gas atoms, machinists’ tools, and circumventing firearm security features.

Continue reading “Beverage Holder of Science”