Vertical Train Hauls Up The Wall

Trains are great for hauling massive amounts of cargo from point A to point B, and occasionally, point C on weekends. But they’re not really known for climbing hills well, and anything vertical is right out. Regardless, [Can Altineller] knows what he wants and set to work, creating the 3D Printed Wall Train.

The first step was to get the train to stick to a vertical surface. This was achieved with the use of neodymium magnets in the train, which are attracted to laser-cut steel plates beneath the plastic tracks. The train itself consists of a custom 3D printed locomotive, outfitted with a motor and step-down gears that drive all four wheels. Said wheels are of a conical shape, and covered with rubber to provide enough grip to overcome gravity. The project is a progression from [Cal]’s earlier four-motor build.

The final result is a charming wall display, with the four-wheel drive train merrily tugging its carriages around the circular course ad infinitum. It’s a fun build, and we’d love to see similar techniques applied to a bigger layout. If this whets your appetite for model railroading, consider building your own turntable, or implementing some fancy sensors. Video after the break.

Continue reading “Vertical Train Hauls Up The Wall”

Magnets Make This Panda Move

A single board computer on a desk is fine for quick demos but for taking it into the wild (or even the rest of the house) you’re going to want a little more safety from debris, ESD, and drops. As SBCs get more useful this becomes an increasingly relevant problem to solve, plus a slick enclosure can be the difference between a nice benchtop hack and something that looks ready to sell as a product. [Chris] (as ProjectSBC) has been working on a series of adaptable cases called the MagClick Case System for the LattePanda Alpha SBC which are definitely worth a look.

The LattePanda Alpha isn’t a run-of-the-mill SBC; it’s essentially the mainboard from a low power ultrabook and contains up to an Intel Core M series processor, 8GB RAM, and 64GB of eMMC. Not to mention an onboard Atmega32u4, WiFi, Gigabit Ethernet, and more. It has more than enough horsepower to be used as an everyday desktop computer or even a light gaming system if you break PCIe out of one the m.2 card slots. But [Chris] realized that such adaptability was becoming a pain as he had to move it from case-to-case as his use needs changed. Thus the MagClick Case System was born.

Continue reading “Magnets Make This Panda Move”

Magnets Versus Laundry Detergent

Soap cleans clothes better than magnets. There, we are spoiling the ending so don’t accuse us of clickbaiting. The funny thing is that folks believe this is plausible enough to ask magnets experts so often that they dedicate a blog entry to comparing magnets and soap. Since you already know how this ends, let’s talk about why this is important. Science. Even though some magnet retailers, herein referred to as [the experts] can easily dismiss this question as fanciful or ridiculous, they apply the scientific method to show that their reasoning is sound and clean evidence is on their side. [The experts] detail the materials and techniques in their experiment so peers may replicate the tests and come to the same results themselves. We do not doubt that the outcome would be equally conclusive.

The experiment includes a control group which processes dirty clothes without detergent or magnets, one group with only magnets, one group with only detergent, and one group with both. White clothing was soiled with four well known garment killers and manually agitated in a bin of warm water. We guessed that magnets would be on par with the control group, and we were pleased to be right. [The experts] now have a body of work to reference the next time someone comes at them with this line. The only question now is if tricky spouses used science to get nerds to do the laundry.

In this age of spin, keeping facts straight instead of jumping to heartfelt conclusions is more vital than ever. We are all potentially citizen scientists so testing a conspiracy is within everyone’s grasp.

Continue reading “Magnets Versus Laundry Detergent”

Hiding Messages In Magnets

Magnets have always been fun, particularly since the super-powerful neodymium type became readily available. You can stack them up, pull them apart, or, if you really want, use them for something practical. Now [Adric] has shown us a new use for them entirely – by writing hidden messages on them.

It’s a remarkably simple hack, but ingenious all the same. [Adric] was pretty sure that the Quelab hackerspace laser wasn’t powerful enough to cut or etch a nickel-plated neodymium magnet. However, they suspected it would have just enough power to heat localised parts of the magnet above the Curie temperature, where the magnetic properties of the material break down.

Thus, the laser cutter was set up to run a few passes over some neodymium magnets. By placing a magnetic viewing film over the magnet, it’s possible to make the etched pattern visible. There was also some incidental visible marking of the magnet surface, which [Adric] thinks is due to the tape applied to the magnet before the laser processing.

For those of you operating spy rings in deep cover, you’ve now got a new way to send them secret messages. Just be sure to check in with the local postal service as to their policies regarding giant magnets in the post. Then you can contemplate whether you have the ability to sense magnetic fields.

The Magnetic Rubik’s Cube

ErnÅ‘ Rubik has much to answer for when it comes to the legacy of his namesake cube. It has both enthralled and tormented generations, allowing some to grandstand in the playground while others are forced to admit defeat in the face of a seemingly intractable puzzle. It just so happens that [Tom Parker] has been working on a Rubik’s cube with a novel magnetic design.

Yes, that’s right – [Tom]’s cube eschews the traditional rotating and sliding mechanism of the original cube, instead replacing it all with magnets. Each segment of the cube, along with the hidden center piece, is 3D printed. Through using a fused deposition printer, and pausing the print at certain layers, it’s possible to embed the magnets inside the part during the printing process.

[Tom] provides several different versions of the parts, to suit printers of different capabilities. The final cube allows both regular Rubik’s cube movements, but also allows for the player to cheat and reassemble it without having to throw it forcefully against the wall first like the original toy.

It’s an interesting build, and a great one to get to grips with the techniques involved in embedding parts in 3D prints. It may not be capable of solving itself, but we’ve seen another build that can pull off that impressive feat. Video after the break.

Continue reading “The Magnetic Rubik’s Cube”

Always Have A Square To Spare

Some aspects of humanity affect all of us at some point in our lives. Whether it’s getting caught in the rain without an umbrella, getting a flat tire on the way to work, or upgrading a Linux package which somehow breaks the entire installation, some experiences are truly universal. Among these is pulling a few squares of toilet paper off the roll, only to have the entire roll unravel with an overly aggressive pull. It’s possible to employ a little technology so that none of us have to go through this hassle again, though.

[William Holden] and [Eric Strebel] have decided to tackle this problem with an innovative bearing of sorts that replaces a typical toilet paper holder. Embedded in the mechanism is a set of magnetic discs which provide a higher resistance than a normal roll holder would. Slowly pulling out squares of paper is possible, but like a non-Newtonian fluid becomes solid when a higher force is applied, the magnets will provide enough resistance when a higher speed tug is performed on the toilet paper. This causes the paper to tear rather than unspool the whole roll, and also allows the user to operate the toilet paper one-handed.

This is a great solution to a problem we’ve all faced but probably forgot about a minute after we experienced it. And, it also holds your cell phone to keep it from falling in the toilet! If you’d like to check out their Kickstarter, they are trying to raise money to bring the product to market. And, if you want to upgrade your toilet paper dispenser even further, there’s also an IoT device for it as well, of course.

Continue reading “Always Have A Square To Spare”

Both Explanation And Build For This Artwork Are Beautiful

Sometimes you encounter projects that defy description, as is the case with this one. So perhaps it’s best to start with what this project is NOT. It is not a sphere. It is not a perpetual energy device. It has neither a sloppy build nor a slapdash video. This IS a motorized rhombicuboctahedron that is a well-explained with high-quality parts and loving attention to detail by [Wolfram Glatthar]. At its heart is an exercise in building a moving device with the barest minimum of friction. Without no grinding in the mechanism, the electronics will probably wear out first. Low friction also means low power consumption, and an hour of sunlight can run the device for two-and-a-half days. Take a look at the video below the break.

Along the sides are a balancing ring with threaded screw sockets and the load-bearing magnets which suspend the bulk of the rhombicuboctahedron using repulsion. Everything is stabilized by a ceramic sphere touching a sapphire glass plate for a single point of contact between some seriously tough materials. The clear sapphire furthers the illusion that everything is floating, but genuine magnetic suspension would require much more power.

Acoustic levitation cannot be forgotten as another powered source of floating or you can cheat and use strobe light trickery.

Continue reading “Both Explanation And Build For This Artwork Are Beautiful”