VRcade’s The Nightmare Machine (Kickstarter Campaign)

vrcade2

Aiming to be the leader in Virtual Reality horror experiences is the immersive VR haunted house in Seattle called ‘The Nightmare Machine’ which promises to be one of the most terrifying events this Halloween. But they need some assistance raising money to achieve the type of scale on a large public level that the project is attempting. The goal is $70,000 within a 30 day period which is quite the challenge, and the team will need to hustle every single day in order to accomplish it.

Yet the focus of the project looks good though, which is to lower the massive barriers of entry in VR that are associated with high hardware costs and provide people with a terrifying 5 minutes of nightmare-inducing experiences. This type of fidelity and range is usually only seen in military research facilities and university labs, like the MxR Lab at USC. And, their custom-built head mounted displays bring out this technology into the reach of the public ready to scare the pants off of anyone willing to put on the VR goggles.

The headsets are completely wireless, multi-player and contain immersive binaural audio inside. A motion sensing system has also been integrated that can track movements of the users within hundreds of square feet. Their platform is a combination of custom in-house and 3rd party hardware along with a slick software framework. The technology looks amazing, and the prizes given out through the Kickstarter are cool too! For example, anyone who puts in $175 or more gets to have their head 3D scanned and inserted into the Nightmare Machine. The rest of the prices include tickets to the October showcase where demos of the VR experience will be shown.

Continue reading “VRcade’s The Nightmare Machine (Kickstarter Campaign)”

Flex Sensing For A DIY Data Glove

cyber

[Cyber] has been testing out intuitive input methods for virtual reality experiences that immerse the user further into the virtual world than archaic devices like a keyboard or mouse would allow. One of his biggest interests so far was the idea of a data glove that interacts with an Arduino Uno to interface with a PC. Since commercial products are yet to exist on a readily available level, [Cyber] decided to build his own.

He started out with a tiny inertial measurement unit called a Pololu MinIMU-9 v2 that tracks orientation of the 3-axis gyro and accelerometer. The USB interface was soldered into place connecting the wires to an Arduino Uno. From there, he hooked up a flex sensor from Spectra Symbol (which were supposedly used in the original Nintendo Power Gloves) and demoed the project by tracking the movement of one of his fingers. As the finger bent, the output printed on the serial monitor changed.

[Cyber] still needs to mount a glove on this system and construct a proper positional tracking method so that physical movement will be mirrored in a simulation.

[Cyber’s] day job has had him busy these last few months, which has forced the project into a temporary hold. Recently though, [Cyber] has been an active member and an influence in the local Orange County VR scene helping to build a nice development culture, so we’re hoping to see more updates from him soon.

To view what he has done up to this point, click the link at the top of the page, and check out the video after the break:

Continue reading “Flex Sensing For A DIY Data Glove”

Self-Assembling Origami Robots

orgami-robots-harvard

MIT engineers have developed a technique to address the challenges involved in manufacturing robots at a cheap and accessible level. Like a plant folding out its petals, a protein folding into shape, or an insect unveiling its wings, this autonomous origami design demonstrated the ability for a mechanical creature to assemble itself and walk away. The technique opens up the possibility of unleashing swarms of flat robots into hard to reach places. Once on site, the robots mobilize from the ground up.

The team behind the project used flexible print circuit boards made out of paper and polystyrene, which is a synthetic aromatic polymer typically found in the commercially sold children’s toy Shrinky Dinks™. Each hinge had embedded circuits that were mechanically programmed to fold at certain angles. Heat was applied to the composite structure triggering the folding process. After about four minutes, the hinges would cool allowing the polystyrene to harden. Some issues did arise though during the initial design phase due to the amount of electrical current running the robots, which was ten times that of a regular light bulb. This caused the original prototypes to burn up before the construction operation was completed.

In the long-term, Core Faculty Member [Robert] would like to have a facility that would provide everyday robotic assistance to anyone in the surrounding community. This place would be accessible to everyone in the neighborhood helping to solve whatever problems might arise, which sounds awfully like a hackerspace to us. Whether the person required a device to detect gas leaks or a porch sweeping robot, the facility would be there to aid the members living nearby.

A video of [Robert] and [Sam] describing the project comes up after the break:

Continue reading “Self-Assembling Origami Robots”

A Swamp Cooler For Burning Man

Swamp%20Cooler%20(4)

For those who don’t know, Burning Man is a week-long festival in the middle of the Black Rock Desert in Nevada. The event attracts a wide range of creative people from all over the world.

This year, [Jake] is going to bring his homemade evaporative ‘swamp cooler’ to help battle the heat. His design uses a medium-sized shipping container with two large holes cut out of it and two 200mm PC cooling fans embedded into the plastic. The fans blow air from the outside into the bin. Humidifier filters sourced from a local dump are inserted into the middle of the container. The filters acts as an absorbent material to hold melt-water being pumped in from another cooler chest above.

A 30 watt solar panel provides enough power to keep the swamp cooler going while giving enough juice to energize decorative LED interior lights along with some backup batteries for phones and cameras. [Jake]’s system contains a re-purposed A/C computer load center for the solar system. He plans to take temperature and humidity readings at the Burn, bringing back the data from the desert to share with the world.

[Jake] does warn about mold with this system though, but one of the advantages with the filters he chose is that they are pretreated with biocidal compounds. This should help to reduce the chance of mold growth. High humidity conditions are also a disadvantage with this type of cooler, but this is a non-issue in the extremely dry desert of The Playa.

If you plan to go to Burning Man, tell about your energy/cooling preparations. Will you be bringing a system similar to this? If so, let us know.

The Berlin Cyberbeetle With Its Own TV

13_Cyberbeetle

The evolution of the mere beetle has transformed from organic matter into robotic gears, circuits, and wires. This Cyberbeetle project was born during an open culture hackathon in Berlin throughout a few months time period. The event was called Coding for Vinci and was held from April into July 2014. The project used an Arduino and combined openly licensed biology related pictures and sounds from the museums in the area in a fun and playful way.

[Kati] and [Tomi] based the design on a gorgeous Chalcosoma atlas beetle species which was found in insect box scans that were taken from a nearby museum. The cool thing about this project is that the Cyberbeetle that [Kati] and [Tomi] created has its own hi-tech insect box with various special features. For instance, when the box was rotated on its side, small doors were revealed that when opened unveiled a tiny home theater system with a hi-definition flat screen, audio system and infrared communication. Inside the horn of the Cyberbeetle was an infrared receiver, which allowed the creature to interface with its TV program when it started. Music videos as well excited the robotic insect.

The project was awarded the “Funniest hack” prize during the hackathon. And a video of it can be seen after the break:

Continue reading “The Berlin Cyberbeetle With Its Own TV”

3D Printed Virtual Reality Goggles

gaming-loop

Oculus, as we know, was acquired by Facebook for $2 billion, and now the VR community has been buzzing about trying to figure out what to do with all this newly accessible technology. And adding to the interest, the 2nd iteration of the development kits were released, causing a resurgence in virtual reality development as computer generated experiences started pouring out from of every corner of the world. But not everyone can afford the $350 USD price tag to purchase one of these devices, bringing out the need for Do-It-Yourself projects like these 3D printed wearable video goggles via Adafruit.

The design of this project is reminiscent of the VR2GO mobile viewer that came out of the MxR Lab (aka the research environment that spun out Palmer Lucky before he created Oculus). However, the hardware here is more robust and utilizes a 5.6″ display and 50mm aspheric lenses instead of a regular smart phone. The HD monitor is held within a 3D printed enclosure along with an Arduino Micro and 9-DOF motion sensor. The outer hood of the case is composed of a combination of PLA and Ninjaflex printing-filament, keeping the fame rigid while the area around the eyes remain flexible and comfortable. The faceplate is secured with a mounting bracket and a pair of aspheric lenses inside split the screen for stereoscopic video. Head straps were added allowing for the device to fit snugly on one’s face.

At the end of the tutorial, the instructions state that once everything is assembled, all that is required afterwards is to plug in a 9V power adapter and an HDMI cable sourcing video from somewhere else. This should get the console up and running; but it would be interesting to see if this design in the future can eliminate the wires and make this into a portable unit. Regardless of which, this project does a fantastic job at showing what it takes to create a homemade virtual reality device. And as you can see from the product list after the break, the price of the project fits under the $350 DK2 amount, helping to save some money while still providing a fun and educational experience.

Continue reading “3D Printed Virtual Reality Goggles”

Twitching Fish Plays Pokemon Underwater

fishypokemon

Over a matter of a few days, thousands of people were simultaneously watching this fish named [Grayson Hopper] float around a bowl of water as a webcam recorded its every move and translated the directions it took into a working gameplay of Pokemon Red. Each section of the tank was split into partitions, with each section acting like a button. So when the fish swam over a specific area, the main Pokemon character [Ash] was told where to go.

It was created during a hackNY hackathon within 24 hours when the fish started its journey in to the world of Pokemon. Already, a subreddit popped up documenting the adventure. Amazingly enough, [Grayson] chose Charmander as its starting Pokemon and has defeated its rival Squirtle.

This project was great for watching hours on end, especially at work, as the cute little fish went about its life unaware that it is becoming a popular internet star.

Check out the link above to stream the video. There is even a chat bar on the side, which allows anyone to jump into the fishy conversation. If the fish looks dead though, it’s probably just sleeping.

[Thanks for the tip Bailey!]

Also, Pokemon was reborn some vintage hardware recently which allows the player to game via the web. Check that out too!