Thanks For Hacking

It’s that time of year again, when the turkey roasts and we think of the important things that we’re thankful for. Here at Hackaday, we’re simply thankful for all of you out there. The readers who make Hackaday worth writing for, and the hackers out there who give us something to write about.

It’s no exaggeration to say that we have one of the most bizarrely creative communities out there, and we’re thankful to still be chronicling all of the inventive madness, all of the engineering feats, and all of the projects that succeed and those that fail. It’s truly a pleasure, day in and day out, to read and to write about.

So thank you all for being Hackaday, for sticking with us through our 20th year now, and for continuing to share your hacks and sending in the tips when you see one that you’d like us to share. Keep on hacking, and we can’t wait to see what you’re up to in 2025.

Art of 3D printer in the middle of printing a Hackaday Jolly Wrencher logo

Open Source, Forced Innovation, And Making Good Products

The open-source hardware business landscape is no doubt a tough one, but is it actually tougher than for closed-source hardware? That question has been on our minds since the announcement that the latest 3D printer design from former open-source hardware stalwarts Prusa Research seems like it’s not going to come with design files.

Ironically, the new Core One is exactly the printer that enthusiasts have been begging Prusa to make for the last five years or more. Since seeing hacker printers like the Voron and even crazy machines like The 100 whip out prints at incredible speed, the decade-old fundamental design of Prusa’s i3 series looks like a slow and dated, if reliable, workhorse. “Bed slinger” has become a bit of a pejorative for this printer architecture in some parts of the 3DP community. So it’s sweet to see Prusa come out with the printer that everyone wants them to make, only it comes with the bitter pill of their first truly closed-source design.

Is the act of not sharing the design files going to save them? Is it even going to matter? We would argue that it’s entirely irrelevant. We don’t have a Core One in our hands, but we can’t imagine that there is anything super secret going on inside that couldn’t be reverse engineered by any other 3DP company within a week or so. If anything, they’re playing catch up with other similar designs. So why not play to one of their greatest strengths – the engaged crowd of hackers who would most benefit from having the design files?

Of course, Prusa’s decision to not release the design files doesn’t mean that they’re turning their backs on the community. They are also going to offer an upgrade package to turn your current i3 MK4 printer into the new Core One, which is about as hacker-friendly a move as is possible. They still offer kit versions of the printers at a discount, and they continue to support their open-source slicer software.

But this one aspect, the move away from radical openness, still strikes us as bittersweet. We don’t have access to their books, of course, but we can’t imagine that not providing the design files gains them much, and it will certainly damage them a little in the eyes of their most devoted fans. We hope the Core One does well, but we also hope that people don’t draw the wrong lesson from this – that it does well because it went closed source. If we could run the experiment both ways, we’d put our money on it doing even better if they released the design files.

Raspberry Pi Compute Module 5 Seen In The Wild

Last Thursday we were at Electronica, which is billed as the world’s largest electronics trade show, and it probably is! It fills up twenty airplane-hangar-sized halls in Munich, and only takes place every two years.

And what did we see on the wall in the Raspberry Pi department? One of the relatively new AI-enabled cameras running a real-time pose estimation demo, powered by nothing less than a brand-new Raspberry Pi Compute Module 5. And it seemed happy to be running without a heatsink, but we don’t know how much load it was put under – most of the AI processing is done in the camera module.

We haven’t heard anything about the CM5 yet from the Raspberry folks, but we can’t imagine there’s all that much to say except that they’re getting ready to start production soon. If you look really carefully, this CM5 seems to have mouse bites on it that haven’t been ground off, so we’re speculating that this is still a pre-production unit, but feel free to generate wild rumors in the comment section.

The test board looks very similar to the RP4 CM demo board, so we imagine that the footprint hasn’t changed. (Edit: Oh wait, check out the M2 slot on the right-hand side!)

The CM4 was a real change for the compute module series, coming with a brand-new pinout that enabled them to break out more PCIe lanes. Despite the special connectors, it wasn’t all that hard to work with if you’re dedicated. So if you need more computing power in that smaller form factor, we’re guessing that you won’t have to wait all that much longer!

Thanks [kuro] for the tip, and for walking around Electronica with me.

Art of 3D printer in the middle of printing a Hackaday Jolly Wrencher logo

Hackers, Patents, And 3D Printing

Last week, we ran a post about a slightly controversial video that claimed that a particular 3D-printing slicing strategy was tied up by a patent troll. We’re absolutely not lawyers here at Hackaday, but we’ve been in the amateur 3D printing revolution since the very beginning, and surprisingly patents have played a role all along.

Modern fused-deposition modelling (FDM) 3D printing began with Stratasys’ patent US5121329A, “Apparatus and method for creating three-dimensional objects”, and the machines they manufactured and sold based on the technology. Go read the patent, it’s an absolute beauty and has 44 different claims that cover just about everything in FDM printing. This was the watershed invention, and today, everything claimed in the patent is free.

Stratasys’ patent on the fundamental FDM method kept anyone else from commercializing it until the patent expired in 2009. Not coincidentally, the first available home-gamer 3D printer, the Makerbot Cupcake, also went on sale in 2009.

The Stratasys machines were also one of the big inspirations for Adrian Bowyer to start the RepRap project, the open-source movement that basically lead to us all having cheap and cheerful 3D printers today, and he didn’t let the patent stop him from innovating before it lapsed. Indeed, the documentation for the RepRap Darwin dates back to 2007. Zach [Hoeken] Smith delivered our hackerspace the acrylic parts to make one just around that time, and we had it running a year or two before the Cupcake came out of the company that he, Bre, and Adam shortly thereafter founded.

The story of hackers and 3D printers is longer than the commercial version of the same story would imply, and a lot of important innovations have come out of our community since then too. For instance, have a look at Stratasys’ patent on heated bed technology. At first read, it seems to cover removable heated beds, but have a look at the cutout at the end of claim 1: “wherein the polymer coating is not a polymer tape”. This cutout is presumably in response to the at-the-time common practice of buying Kapton, PEI, or PET tape and applying that to removable heated bed surfaces. I know I was doing that in 2012, because I read about it on IRC or something, long before the Stratasys patent was filed in 2014. They could only get a patent for sprayed-on coatings.

As [Helge] points out, it’s also easily verifiable that the current patent on “brick layers” that we’re worrying about, filed in 2020, comes later than this feature request to Prusa Slicer that covers essentially the same thing in 2019. We assume that the patent examiner simply missed that obvious prior art – they are human after all. But I certainly wouldn’t hesitate to implement this feature given the documented timing.

I would even be so bold as to say that most of the post-2010 innovation in 3D printing has been made by hobbyists. While the RepRap movement was certainly inspired by Stratasys’ invention in the beginning, our community is where the innovation is happening now, and maybe even more starkly on the software side of things than the hardware. Either way, as long as you’re just doing it for fun, let the suits worry about the patents. Hackers gotta hack.

The Badge Hacks Of Supercon

We just got home from Supercon and well, it was super. It was great to see everyone, and meet a whole bunch of new folks to boot! The talks were great, and you can see a good half of them already on the Hackaday YouTube channel, so for that you didn’t even have to be there.

The badge hacks were, as with most years, out of this world. I’ll admit that my cheeks were sore from laughing so much after emceeing it this year, due in no small part to two hilarious AI projects, both of which were also righteous hacks in addition to full-on comedy routines. A group of six programmers got all of their hacks working together, and the I2C-to-MQTT bridge had badges blinking in sync even in the audience. You want blinkies? We had blinkies.

But the hack that warmed everyones’ hearts was “I figured it out” by [Connie]. Before this weekend, she had never coded MicroPython and didn’t know anything about I2C. But yet by Sunday afternoon, she made a sweet spiral animation on the LED wheel, and blinked the RGBs in the touchwheel.

What I love about the Hackaday audience is that, when the chips are down, someone doing something new for the first time is valued as much as some of the more showy work done by more experienced programmers. Hacking is also about learning and pushing out boundaries after all. The shouts for “I figured it out” were louder than any others in the graphics hacks category, it took home a prize, and I was smiling from ear to ear.

Hackaday can learn from this too. [Connie]’s hack definitely shows the need for another badge-hack category, first timers, because we absolutely should recognize first tries. There was also a strong petition / protest from people who had worked new hacks onto previous year’s badges – like [Andy] and [koppanyh]’s addition of bit-banged I2C to the Voja 4 badge from two years ago, and [Instant Arcade]’s Polar Pacman, which he named “Ineligible for this Competition” in protest. Touche.

We’re stoked to learn new things, see new hacks, and basically just catch up with everything folks did over the weekend. We can’t wait to see what you’re up to next year!

Hardware-in-the-Loop Continuous Integration

How can you tell if your software is doing what it’s supposed to? Write some tests and run them every time you change anything. But what if you’re making hardware? [deqing] has your back with the Automatic Hardware Testing rig. And just as you’d expect in the software-only world, you can fire off the system every time you update the firmware in your GitHub.

A Raspberry Pi compiles the firmware in question and flashes the device under test. The cool part is the custom rig that simulates button presses and reads the resulting values out. No actual LEDs are blinked, but the test rig looks for voltages on the appropriate pins, and a test passes when the timing is between 0.95 and 1.05 seconds for the highs and lows. Firing this entire procedure off at every git check-in ensures that all the example code is working.

So far, we can only see how the test rig would work with easily simulated peripherals. If your real application involved speaking to a DAC over I2C, for instance, you’d probably want to integrate that into the test rig, but the principle would be the same.

Are any of you doing this kind of mock-up hardware testing on your projects? Is sounds like it could catch bad mistakes before they got out of the house.

The 2024 Hackaday Supercon SAO Badge Reveal

We’ve been hinting at it for a few months now, running a series of articles on SAOs, then a Supercon Add-On Challenge. We even let on that the badge would have space for multiple SAOs this year, but would you believe six?

Way back in 2017ish, Hackaday’s own [Brian Benchoff] and the [AND!XOR] crew thought it would be funny and useful to create a “standard” for adding small custom PCB art-badges onto bigger conference badges. The idea was to keep it quick and dirty, uncomplicated and hacky, and the “Shitty” Add On was born. The badge community took to this like wildfire. While the community has moved on from the fecal humor, whether you call these little badgelets “SAOs”, “Simple Add-Ons”, or even “Supercon-8 Add Ons”, there’s something here for everyone. So if you’ve already got some SAOs in a drawer, bring them to this year’s Supercon and show them off!

Continue reading “The 2024 Hackaday Supercon SAO Badge Reveal”