A Cheap Yellow Display Makes A Video Walkie Talkie

The ESP32 series of microprocessors with their cheap high-power cores and built-in wireless networking have brought us a wide variety of impressive projects over the years. We’re not sure we’ve quite seen the like of [Jonathan R]’s video walkie talkie before though, a pair of units which as you might guess, deliver two-way video and audio communications.

The trick involves not one but two ESP32s: an ESP32-S3 based camera module, and a more traditional Tensilica ESP32 in a screen module. It’s an opportunity for an interesting comparison, as one device uses the Cheap Yellow Display board, and the other uses an Elecrow equivalent. The audio uses ESP-NOW, while the video uses WiFi, and since the on-board audio amplifiers aren’t great, there’s a small amp module.

The video below has a comprehensive run-down including the rationale behind the design choices, as well as a demonstration. There’s a small lag, but nothing too unacceptable for what is after all an extremely cheap device. Perhaps after all this time, the video phone has finally arrived!

Continue reading “A Cheap Yellow Display Makes A Video Walkie Talkie”

Jenny’s (Not Quite) Daily Drivers: Raspberry Pi 1

An occasional series of mine on these pages has been Daily Drivers, in which I try out operating systems from the point of view of using them for my everyday Hackaday work. It has mostly featured esoteric or lesser-used systems, some of which have been unexpected gems and others have been not quite ready for the big time.

Today I’m testing another system, but it’s not quite the same as the previous ones. Instead I’m looking at a piece of hardware, and I’m looking at it for use in my computing projects rather than as my desktop OS. You’ll all be familiar with it: the original Raspberry Pi appeared at the end of February 2012, though it would be May of that year before all but a lucky few received one. Since then it has become a global phenomenon and spawned a host of ever-faster successors, but what of that original board from 2012 here in 2025? If you have a working piece of hardware it makes sense to use it, so how does the original stack up? I have a project that needs a Linux machine, so I’m dusting off a Model B and going down memory lane.

Continue reading “Jenny’s (Not Quite) Daily Drivers: Raspberry Pi 1”

Repairing Classic Sound Cards

Sound hardware has been built into PC motherboards for so long now it’s difficult to remember the days when a sound card was an expensive add-on peripheral. By the mid to late 1990s they were affordable and ubiquitous enough to be everywhere, but three decades later some of them are starting to fail. [Necroware] takes us through the repair of a couple of Creative Labs Sound Blaster 16s, which were the card to have back then.

The video below is a relaxed look at typical problems afflicting second-hand cards with uncertain pasts. There’s a broken PCB trace on the first one, which receives a neat repair. The second one has a lot more wrong with it though, and reveals some surprises. We would have found the dead 74 series chips, but we’re not so sure we’d have immediately suspected a resistor network as the culprit.

Watching these cards become sought-after in the 2020s is a little painful for those of us who were there at the time, because it’s certain we won’t be the only ones who cleared out a pile of old ISA cards back in the 2000s. If you find one today and don’t have an ISA slot, worry not, because you can still interface it via your LPC bus.

Continue reading “Repairing Classic Sound Cards”

A Mouse, No Hands!

There are some ideas which someone somewhere has to try. Take [Uri Tuchman]’s foot mouse. It’s a computer mouse for foot operation, but it’s not just a functional block. Instead it’s an ornate inlaid-wood-and-brass affair in the style of a very fancy piece of antique footwear.

The innards of an ordinary USB mouse are placed in something best described as a wooden platform heel, upon which is placed a brass sole with a couple of sections at the front to activate the buttons with the user’s toes. The standout feature is the decoration. With engraving on the brass and inlaid marquetry on the wood, it definitely doesn’t look like any computer peripheral we’ve seen.

The build video is below the break, and we’re treated to all the processes sped up. At the end he uses it in a basic art package and in a piloting game, with varying degrees of succes. We’re guessing it would take a lot of practice to gain a level of dexterity with this thing, but we salute him for being the one who tries it.

This has to be the fanciest peripheral we’ve ever seen, but surprisingly it’s not the first foot mouse we’ve brought you.

Continue reading “A Mouse, No Hands!”

Farewell Economy 7, A Casualty Of The Long Wave Switch-Off

If you paid attention to advertising in 1980s Britain, you were never far from Economy 7. It was the magic way to heat your house for less, using storage heaters which would run at night using cheap electricity, and deliver warmth day-long. Behind it all was an unseen force, a nationwide radio switching signal transmitted using the BBC’s 198 kHz Long Wave service. Now in 2025 the BBC Radio 4 Long Wave service it relies on is to be turned off, rendering thousands of off-peak electricity meters still installed, useless. [Ringway Manchester] is here to tell the tale.

The system was rolled out in the early 1980s, and comprised of a receiver box which sat alongside your regular electricity meter and switched in or out your off-peak circuit. The control signal was phase-modulated onto the carrier, and could convey a series of different energy use programs. 198 kHz had the useful property due to its low frequency of universal coverage, making it the ideal choice. As we’ve reported in the past the main transmitter at Droitwich is to be retired due to unavailability of the high-power vacuum tubes it relies on, so now time’s up for Economy 7 too. The electricity companies are slow on the uptake despite years of warning, so there’s an unseemly rush to replace those old meters with new smart meters. The video is below the break.

The earliest of broadcast bands may be on the way out, but it’s not entirely over. There might even be a new station on the dial for some people.

Continue reading “Farewell Economy 7, A Casualty Of The Long Wave Switch-Off”

Everyone’s Talking GPMI, Should You?

The tech press has been full of announcements over the last day or two regarding GPMI. It’s a new standard with the backing of a range of Chinese hardware companies, for a high-speed digital video interface to rival HDMI. The Chinese semiconductor company HiSilicon have a whitepaper on the subject (Chinese language, Google Translate link), promising a tremendously higher data rate than HDMI, power delivery well exceeding that of USB-C, and interestingly, bi-directional data transfer. Is HDMI dead? Probably not, but the next few years will bring us some interesting hardware as they respond to this upstart.

Reading through pages of marketing from all over the web on this topic, it appears to be an early part of the push for 8k video content. There’s a small part of us that wonders just how far we can push display resolution beyond that of our eyes without it becoming just a marketing gimmick, but it is true to say that there is demand for higher-bandwidth interfaces. Reports mention two plug styles: a GPMI-specific one and a USB-C one. We expect the latter to naturally dominate. In terms of adoption, though, and whether users might find themselves left behind with the wrong interface, we would expect that far from needing to buy new equipment, we’ll find that support comes gradually with fallback to existing standards such as DisplayPort over USB-C, such that we hardly notice the transition.

Nearly a decade ago we marked the passing of VGA. We don’t expect to be doing the same for HDMI any time soon in the light of GPMI.

Ask Hackaday: Vibe Coding

Vibe coding is the buzzword of the moment. What is it? The practice of writing software by describing the problem to an AI large language model and using the code it generates. It’s not quite as simple as just letting the AI do your work for you because the developer is supposed to spend time honing and testing the result, and its proponents claim it gives a much more interactive and less tedious coding experience. Here at Hackaday, we are pleased to see the rest of the world catch up, because back in 2023, we were the first mainstream hardware hacking news website to embrace it, to deal with a breakfast-related emergency.

Jokes aside, though, the fad for vibe coding is something which should be taken seriously, because it’s seemingly being used in enough places that vibe coded software will inevitably affect our lives.  So here’s the Ask Hackaday: is this a clever and useful tool for making better software more quickly, or a dangerous tool for creating software nobody quite understands, containing bugs which could cause a disaster?

Our approach to writing software has always been one of incrementally building something from the ground up, which satisfies the need. Readers will know that feeling of being in touch with how a project works at all levels, with a nose for immediately diagnosing any problems that might occur. If an AI writes the code for us, the feeling is that we might lose that connection, and inevitably this will lead to less experienced coders quickly getting out of their depth. Is this pessimism, or the grizzled voice of experience? We’d love to know your views in the comments. Are our new AI overlords the new senior developers? Or are they the worst summer interns ever?