BackTrack 3 Final Is Out


OpenSuse and Ubuntu are perfectly serviceable Linux distros, but we’ve had a soft spot for BackTrack from the very start. Good news for us, since yesterday was the long awaited release of BackTrack 3 Final. It uses the same 2.6.21.5 kernel as before (to maintain WiFi injection compatibility) and Nessus is still out, but it is not without a great deal of other improvements. Its forensic capabilities are better than ever, largely due to included apps like a fully functional version of SAINT and a special version of Maltego made just for BackTrack. The download is free, but Remote-Exploit is asking users not to distribute it without notifying them first, because they’re trying to keep track of the number of downloads.

[via Midnight Research Labs]

Finding Sensitive Data With Freeware


When an organization’s network grows to a certain size, its difficult to keep track of every single piece of sensitive information like credit card numbers or social security numbers. In order to find and secure this data, companies often turn to data loss prevention (DLP) services. This is not a viable option for many organizations, though, as DLP services can often be expensive and time-consuming to deploy.

Such organizations are not entirely without options: a recent article on Dark Reading lists several DLP tools authored by teams from various universities, all free to download and use. Programs like The University of Texas at Austin’s Sensitive Number Finder and Virginia Tech’s Find_SSN were designed to find pieces of data on computers and servers formatted in ways typical to sensitive information (xxx-xx-xxxx for SSNs, for example). This approach can often lead to false positives, so some measure of human control is required. They are also incapable of scanning application servers or other forms of data in transit. Cornell’s Spider can scan various application server types using different protocols. When used in conjunction, all of these apps can help secure your data without the expense of outsourcing the job.

RGB Etched Box

[youtube=http://www.youtube.com/watch?v=KG4PWZyR4Sk&hl=en]
[Dine909] brings us this simple glowing box made out of five etched PCBs. The PCBs control RGB LEDs inside the box, which is also filled with clear glass beads. The four walls are connected to a base controller board that has a Cypress PSoC chip for color mixing. There’s no writeup, and even though it looks a lot like the Lament Configuration, it should be a lot easier to build; any transportation to other dimensions it provides will be strictly figurative.

[via ladyada]

Nintendo DrumAxe Controller


We can’t remember the last time a new cart or peripheral for the NES was released, but [Tony Amendolare] at ElektroKraft has just changed that. In conjunction with Nesdev.com, [Amendolare] created Super Synth Drums, a NES-compatible cartridge that turns button presses on the NES gamepad into drum sounds synthesized by the NES’s sound chips. To complement his software, he created the Sonic DrumAxe, a controller that looks a bit like a potato gun and is played like a guitar.

Continue reading “Nintendo DrumAxe Controller”

EM Brace For Sensing Magnetic Fields


We’ve discussed the notion of using machines to add or improve sensory input to the body before, and we’ve found another project with the same idea. [Nick Hasty] has developed an object he calls the EM Brace, which allows the user to sense electromagnetic fields with a wave of the hand.

The device works by connecting two antennas to an enclosure that contains a speaker. The enclosure is intended to be worn on the back with a harness securing it in place and wrapping the arms around the wearer’s body. The antennas are incorporated into a pair of gloves. When the antennas pick up electromagnetic radiation, the speaker emits a low frequency sound waves. They vibrate the enclosure and the arms, which in turn vibrate the body, signaling to the wearer that he or she is in an electromagnetic field, also referred to as hertzian space. A good deal of detail about the project can be found on his blog, or if you prefer, download his thesis paper in(PDF).

[via Make]

Eavesdropping Encrypted Compressed Voice


A team from Johns Hopkins University has discovered a way to eavesdrop on encrypted voice streams. Voice data like the kind used by Skype for its VoIP service sends encrypted packets of varying sizes for different sounds. The team learned that by simply measureing the size of the packets, they could determine what was being said with a high rate of accuracy. VoIP providers often use a variable bit rate to use bandwidth more efficiently, but it is this compression that makes audio streams vulnerable to eavesdropping.

The team’s software is still in its early stages of development, yet incapable of parsing entire conversations. It is capable, though, of finding pre-determined keywords and inferring common phrases bases on the words it detects. It also has a higher rate of accuracy in identifying long complicated words than short ones. The team’s goal was not to eavesdrop, but to expose the vulnerability; team member [Charles Wright] notes, “we hope we have caught this threat before it becomes too serious.”

[via Schneier on Security]
[photo: altemark]

3-digit Frequency Meter


Flow sensors are useful tools for collecting data on the rate of liquid usage, but they need a device to display the data they collect. This three digit frequency meter was designed by [Turbokeu] to do just that, converting a Swissflow SF800 flow sensor’s square wave signal (similar to fan RPM signals) into an numerical expression of liters per minute on a 3 digit LCD. Fan RPM is

[Turbokeu] provides detailed schematics of different configurations for the frequency meter as well as schematics of the layouts of the two PCBs that are used. Even if you don’t have an immediate use for a frequency meter, his clean and readable schematics are worth a look in their own right. The display is installed on front of a tower case along side a CPU speed display.

[via YourITronics]