Making Corrugated Cardboard Stronger And Waterproof

As useful as corrugated cardboard is, we generally don’t consider it to be a very sturdy material. The moment it’s exposed to moisture, it begins to fall apart, and it’s easily damaged even when kept dry. That said, there are ways to make corrugated cardboard a lot more durable, as demonstrated by the [NightHawkInLight]. Gluing multiple panels together so that the corrugation alternates by 90 degrees every other panel makes them more sturdy, with wheat paste (1:5 mixture of flour and water) recommended as adhesive.

Other tricks are folding over edges help to protect against damage, and integrating wood supports. Normal woodworking tools like saws can cut these glued-together panels. Adding the wheat paste to external surfaces can also protect against damage. By applying kindergarten papier-mâché skills, a custom outside layer can be made that can be sanded and painted for making furniture, etc.

Continue reading “Making Corrugated Cardboard Stronger And Waterproof”

Upgrade Your Filament Dryer With A Swiveling Filament Port

Many FDM filament dryers have a port through which you can guide the filament. This handy feature allows you to print from the spool without removing it from the dryer, saving time and limiting exposure to (moist) air. Unfortunately, these exit ports aren’t always thought out very well, mostly in terms of the angle with the spool as it unrolls. The resulting highly oblique orientation means a lot of friction of the filament on the side of the port. This issue is addressed in a recent [Teaching Tech] video, with a simple, low-cost solution.

The basic idea is to have a swiveling port, inspired by a spherical bearing. The design shown in the video uses a PC4-M6 pneumatic connector to pass the PTFE tube. Connector choice is critical here, as many PC4-M6 pneumatic connectors won’t accommodate the PTFE.  As a fallback, you can drill out a connector to enable this.

Once the connector is sorted, you need a 13 mm (~0.5″) step drill bit to widen the opening in the filament dryer. This ready-to-print version has 10 degrees of freedom in any direction, but you can adapt it to fit your needs. With this mod installed, the angle with which the filament enters the port should remain as close to zero as possible, preventing both friction and damage to the port and filament.

Continue reading “Upgrade Your Filament Dryer With A Swiveling Filament Port”

Adaptive Keyboards & Writing Technologies For One-Handed Users

After having been involved in an accident, [Kurt Kohlstedt] suffered peripheral neuropathy due to severe damage to his right brachial plexus — the network of nerves that ultimately control the shoulder, arm, and hand. This resulted in numbness and paralysis in his right shoulder and arm, with the prognosis being a partial recovery at best. As a writer, this meant facing the most visceral fear possible of writing long-form content no longer being possible. While searching for solutions, [Kurt] looked at various options, including speech-to-text (STT), before focusing on single-handed keyboard options. Continue reading “Adaptive Keyboards & Writing Technologies For One-Handed Users”

Upgrading An Old Espresso Machine

The Francis! Francis! X1 espresso machine in its assembled state. (Credit: Samuel Leeuwenburg)

Recently, [Samuel Leeuwenburg] got his paws on a Francis! Francis! X1 (yes, that’s the name) espresso machine. This is the espresso machine that is mostly famous for having been in a lot of big TV shows in the 1990s. In the early 2000s, the X1 even became a pretty good espresso machine after the manufacturer did some more tinkering with it, including changing the boiler material, upgrading the pump, etc.

In the case of the second-hand, but rarely used, machine that [Samuel] got, the machine still looked pretty good, but its performance was pretty abysmal. After popping the machine open the boiler turned out to be pretty much full of scale. Rather than just cleaning it, the boiler was upgraded to a brass version for better heat retention and other perks.

Continue reading “Upgrading An Old Espresso Machine”

The Switch 2 Pro Controller: Prepare For Glue And Fragile Parts

The Switch 2 Pro controller’s battery is technically removable, if you can get to it. (Credit: VK’s Channel, YouTube)

For those of us who have worked on SNES and GameCube controllers, we know that these are pretty simple to get into and maintain. However, in the trend of making modern game controllers more complex and less maintainable, Nintendo’s new Switch 2 Pro controller is giving modern Xbox and PlayStation controllers a run for their money in terms of repair complexity. As shown in a teardown by [VK] on YouTube (starting at nine minutes in), the first step is a disappointing removal of the glued-on front plate. After that you are dealing with thin plastic, the typical flimsy ribbon cables and a lot of screws.

The main controller IC on the primary PCB is an ARM-based MediaTek MT3689BCA Bluetooth SoC, which is also used in the Switch 2’s Joy-Cons. The 3.87 V, 1070 mAh Li-ion battery is connected to the PCB with a connector, but getting to it during a battery replacement might be a bit of a chore.

Continue reading “The Switch 2 Pro Controller: Prepare For Glue And Fragile Parts”

Watkin’s Tower: London’s Failed Eiffel Tower

The city of London is no stranger to tall constructions today, but long before the first skyscrapers would loom above its streets, Watkin’s Tower was supposed to be the tallest structure in not only London but also the entirety of the UK. Inspired by France’s recently opened Eiffel tower, railway entrepreneur and Member of Parliament [Sir Edward Watkin] wanted to erect a structure that would rival the Eiffel tower, as part of a new attraction park to be constructed near the Middlesex hamlet of Wembley. In a retrospective, [Rob’s London] channel takes a look at what came to be known as Watkin’s Folly among other flattering names.

The first stage of Watkin's Tower at Wembley Park. The only to be ever completed. (Source: Wikimedia)
The first stage of Watkin’s Tower at Wembley Park. The only to be ever completed. (Source: Wikimedia)

After [Gustave Eiffel], the architect of the Eiffel tower recused himself, a design competition was held for a tower design, with the Illustrated Catalogue of the 68 designs submitted available for our perusal. The winner turned out to be #37, an eight-legged, 366 meter tall tower, much taller than the 312.2 meter tall Eiffel tower, along with multiple observation decks and various luxuries to be enjoyed by visitors to Wembley Park.

Naturally, [Watkin] commissioned a redesign to make it cheaper, which halved the number of legs, causing subsidence of the soil and other grievances later on. Before construction could finish, the responsible company went bankrupt and the one constructed section was demolished by 1907. Despite this, Wembley Park was a success and remains so to this day with Wembley Stadium built where Watkin’s Folly once stood.

Continue reading “Watkin’s Tower: London’s Failed Eiffel Tower”

How A DIY Chicken Coop Door Opener Went From Simple To Complex

How hard could it be to make a chicken coop door that can be configured to open and close automatically using a straightforward interface? That’s the question that [Jeff Sandberg] set out with, after three years of using a more basic off-the-shelf unit that offered no remote access nor a convenient user interface. The use case for [Jeff] was rather straightforward: the door would be open during the day and closed at night to keep the hens safely inside the coop.

The commercial solution offered an RTC-backed programmable interface as well as a light sensor, but the latter wasn’t always reliable in inclement weather and making simple changes to the programming when e.g. the hens had to stay inside a day due to work on the yard, was much more complicated than needed, plus had to be done on the spot. The new system would solve all these ills.

That said, the existing door mechanism was doing a fine job and could be kept. This just left making a new box with electronics to control it, starting with an ESP32C3 with the ESPHome firmware that is hooked into the local Home Assistant system, along with a motor to lift and lower the door and with magnetic contact sensors.

So far so easy. The hard part came with the installation, which involved trenching to the hen house for mains power, repairing the damage from this, and troubleshooting a power issue that turned out to be due to a dodgy power adapter. The payoff is that now the chicken coop is also part of the smart home and their owner never has to trudge through a soggy garden again to adjust the programming on a dim LC display with far too few buttons.