Super Angry Birds Is A Physical Controller For The Game

This role reversal is quite entertaining. While the game Angry Birds is a virtual realization of knocking over stuff with a sling-shot, Super Angry Birds adds a physical control element back to the virtual game. It’s silly, but well-executed. The main controller takes advantage a part which we don’t see used very often. It’s a motorized linear actuator which would most often be seen on a high-end audio console.

Check out the video after the break to see the controller in action. The linear encoder is used to simulate pulling the rubber sling shot back. It uses the motorized feature to spring back in place, but we’re not sure whether or not the motor also provides resistance during the pull. The laser cut case also includes a companion in the form of a TNT trigger box al-a Wile E Coyote.

If this isn’t real enough for you perhaps this slingshot controller will suffice.

Continue reading “Super Angry Birds Is A Physical Controller For The Game”

3D Printed Exoskeleton Helps This Little Girl Develop More Normal Body Function

This 2-year-old girl has a condition called arthrogryposis which causes her not to be able to move her arms. But with a little help, her muscles can be strengthened to achieve more normal use of her limbs. This is not the first time that an exoskeleton has been used, but the advent of 3D printed parts makes the skeleton work much better.

Previous exoskeletons were made of metal and were quite heavy. When you’re talking about a 25 pound child every extra ounce counts. Moving to plastic parts lightened the load. Now the structure can be mounted on her torso, using rubber bands to aid her movement until her muscles are strong enough to do it on their own.

Of course to [Emma] this isn’t an exoskeleton. It’s her set of magic arms.

Continue reading “3D Printed Exoskeleton Helps This Little Girl Develop More Normal Body Function”

Earthworm Robot Does What Earthworms Do

This earthworm robot comes to us from researchers at the Massachusetts Institute of Technology. It is made up of mostly soft parts and manages to inch its way along the ground.

The robot’s “skin” is made from a tube of polymer mesh that will hold up to an awful lot of bending and stretching. As with its biological namesake, locomotion is facilitated by circular muscles. In this case muscle wire, when stimulated with electricity, contracts around the mesh casing. By coordinating these contractions the robot is able to inch its way along.

But it’s not just the method of travel that makes this research project interesting. The bot is also extremely resistant to damage. The video after the break shows the device withstanding several whacks from a mallet and being stepped on by the team that created it.

Continue reading “Earthworm Robot Does What Earthworms Do”

Painting A Wall With Light Using Water As Ink

This art installation uses a fantastic concept. The wall can be painted using water as ink which lights up a huge grid of white LEDs. This offers a very wide range of interactive possibilities since water can be applied in so many ways. Grab a paint brush, wet your finger, use a squirt gun, or mist with a spray bottle and the lights will tell you where you hit the wall.

We’re hoping a reader who speaks both French and English might help out by posting a translation as a comment on the prototyping video. In it, [Antonin Fourneau] shows off the various prototypes that led to the final product and we’d love to know what he’s saying. But by seeing the prototypes, then watching the English promo video after the break we can make a pretty good guess.  The boards have a hole that fits the flat-lens LEDs perfectly. This creates a mostly water tight seal to keep the liquid on one side while the leads are safe on the other. The water side has squiggly pads which allow droplets of water to complete an electrical connection.

Continue reading “Painting A Wall With Light Using Water As Ink”

Manpowered PVC Rollercoaster

Swing sets and jungle gyms are good enough for your average back yard. But if you want to go extreme you need to build your own backyard roller coaster.

This impressive offering uses PVC pipe for the rails. At its tallest it stands 12 feet, using pressure treated 4×4 lumber as the supports. Pressure treated spacers span the tracks, with the uprights — which are cemented in place — in the center.

You can get a better look at it in the video after the break. This is a parent-powered system. Strap you kid in and then use a stick to push the car up to the top of the hill. We just love it that before the kart has made it back to the start the child is already screaming “again daddy”!

It doesn’t look quite as fast as the metal back yard roller coaster we saw some time ago. But we do wonder how they bent the PVC pipes and whether they’re strong enough to pass the test of time (especially being exposed to the sunlight)? Continue reading “Manpowered PVC Rollercoaster”

Seeing Through Walls Using WiFi

Turns out you don’t need to be Superman to see through walls. Researchers at University College London have developed a way to passively use WiFi as a radar system. Unlike active radar systems (which themselves send out radio waves and listen for them to echo back), passive radar systems cannot be detected.

The system is small enough to fit in a briefcase, and has been tested through a one-foot-thick brick wall. It can detect position, speed, and direction of a person moving on the other side of that wall, but cannot detect stationary object. [Karl Woodbridge] and [Kevin Chetty], the engineers behind the prototype, think it can be refined to pick up motion as minuscule as a person’s rib cage moving with each breath. For some reason we get the picture in our mind of that body scanner from the original Total Recall.

[via Reddit]

[Image Credit]

Blinking Light Switch

In addition to being a great replacement for that aging eye patch, these specs act as a light switch. By watching your eyelids, they are able to kill the lights whenever you blink.

The installation is a shared experience piece conceived by [Michal Kohút]. He wanted to illustrate the constant blinking we all do but rarely think about. The system uses an Arduino to capture events from the blink sensors and switch the lights accordingly. This way the wearer doesn’t experience a loss of illumination, but the observer does. Check out the video after the break for a quick demonstration.

One of the commenters from the source article shared a video link to another blink-based light project. That one uses electrodes attached to skin around your eye in order to detect eyelid motion.

Continue reading “Blinking Light Switch”