Hacking a Sonoff WiFi Switch

The ESP8266 platform has become so popular that it isn’t just being used in hobby and one-off projects anymore. Companies like Sonoff are basing entire home automation product lines around the inexpensive WiFi card. What this means for most of us is that there’s now an easily hackable and readily available product on the market that’s easily reprogrammed and used with tools that we’ve known about for years now, as [Dan] shows in his latest project.

[Dan] has an aquaponics setup in his home, and needs some automation to run the lights. Reaching for a Sonoff was an easy way to get this done, but the out-of-the-box device can only be programmed in the simplest of ways. To get more control over the unit, he wired a USB-to-Serial UART to the female headers on the board and got to programming it.

The upgraded devices are fully programmable and customizable now, and this would be a great hack for anyone looking to get more out of a Sonoff switch. A lot of the work is already done, like building a safe enclosure, wiring it, and getting it to look halfway decent. All that needs to be done is a little bit of programming. Of course, if you’d like to roll out your own home automation setup from scratch that can do everything from opening the garage door to alerting you when your dog barks, that’s doable too. You’ll just need a little more hardware.

Light Switch For The Lazy

[Will Donaldson] has whipped up a quick hack for anyone thinking of dipping their toe into home automation — or otherwise detest flicking off the bedroom light before navigating their way to their bed: a remote control light switch!

This remote switch uses a sg90 servo, an Arduino Uno, and pairs of ATtiny85s with HC-05 Bluetooth modules assembled on protoboards. The 3D printed mount screws easily on top of a standard light switch cover while still allowing the switch to be flipped the old-fashioned way. It’s also perfect as a temporary solution — [Donaldson] is presently renting his apartment — or for those unwilling to mess with the mains power of their abode.

Continue reading “Light Switch For The Lazy”

Jeep Wrangler Dome Light Mod

If you’re the owner of a Jeep Wrangler, you may have experienced some frustration with the interior dome light. For those not in the know, removing the doors on a warm day or for a bit of fun can lead to a dead battery. This happens because the Wrangler’s light stays on unless the fuse or light are removed, or a custom shutoff switch is added — at the expense of troublesome wiring. You could say it’s a Jeep Thing. [Tim Nummy] offers a solution with minimal modifications.

First off, pop the switch out of the door and set it aside. As a replacement, [Tim Nummy] has managed to salvage a door light switch from an old Mercedes. In addition to the same momentary-off function as the Wrangler’s stock switch, the button on the new one can be pulled out and locked for a secondary off position. Many machines and appliances use this same type of switch in their safety interlocks as a service position. [Tim] didn’t want to cut apart the wiring in the Wrangler in case something goes awry down the line, so for now he has filed down some spade terminals to slot into the Mercedes plug. He’s also 3D printed a nut to nicely secure the new switch in place. Check out his how-to video after the break!

Continue reading “Jeep Wrangler Dome Light Mod”

Reverse Engineering the Nintendo Switch Joy-Cons

The Switch is Nintendo’s latest effort in the console world. One of its unique features is the Joy-Cons, a pair of controllers that can either attach directly to the console’s screen or be removed and used individually. But how do they work? [dekuNukem] decided to find out.

The reverse engineering efforts begin with disassembly. Surprisingly, there is no silkscreen present on the board to highlight test points or part numbers. This is likely to conflate intended to stymie community efforts to work with the hardware, as different teams may create their own designations for components. Conversely, the chips inside still have their identifying markings present, which does ease identification somewhat.

There are some interesting choices made – the majority of the buttons are scanned in a matrix configuration by the on-board microcontroller, making it harder to spoof button presses. The controllers communicate over Bluetooth, switching to a physical serial connection when attached directly to the screen. This runs at a blistering 3,125,000 BPS after the initial handshake is completed.

Overall it’s a fairly comprehensive reverse engineering effort, and [dekuNukem] has provided excellent detail in the writeup for anyone else looking to get involved. There’s still some work left to do, like investigating the rumble messages, but it’s an excellent start and very comprehensive.

Perhaps you’re more interested in older Nintendo hardware? Check out this comprehensive effort to figure out NES console-to-cartridge security methods.

Hacker Heroism: Building Your Way Out of AV Hell

Many years ago, in a rainy concrete jungle on the west coast of Australia, I worked for a medium-sized enterprise doing a variety of office-based tasks. Somehow, I found myself caught up in planning a product launch event outside the official remit of my position. We got through it, but not before the audiovisual (AV) setup of the event turned into one giant hack.

The initial planning stages went remarkably smoothly until less than a month out from the big day when three weeks of frantic changes and revisions to the presentation rained down. These were some of the hardest days of my working life to date, as it seemed that we would lock in a new arrangement, only to tear it up days later as some new vital criteria came to light, throwing everything back into disarray.

Things came to a head on the night before the event. Working with two different AV teams we had planned for four projection screens and five flat screen televisions spread throughout the venue and controlled from the central AV desk. But somewhere in all those changes the televisions were set up to all display a still image, or nothing at all. I needed to show different videos on each and have the ability to black them all out.

It was at this point I realized we were screwed. The production team simply didn’t have the hardware to drive another five screens, but they could source it — for the sum of $5000. Management were furious, and were under the impression, like myself that this was what we had asked and paid for already. I was at an impasse, and beginning to wonder if I’d have a job come Monday. I wandered off to a corner to curse, and more importantly, think. After all, I’m a hacker — I can get through this.

Continue reading “Hacker Heroism: Building Your Way Out of AV Hell”

RADAR Controlled Speakers

[Scott] had a simple problem – he was tired of leaning over his work bench to change the volume on his speakers. He desired a system that would readily allow him to switch the speakers on and off from a more comfortable distance. Not one to settle for the more conventional solutions available, [Scott] whipped up a RADAR-activated switch for his speaker system.

The build relies on a surprisingly cost-effective RADAR module available off the shelf, running in the 5.8GHz spectrum. At under $10, it’s no big deal to throw one of these into a project that requires some basic distance sensing. [Scott] decided to keep things simple – instead of going with a full-fat microcontroller to control the speakers, a 74HC590 IC was used to create a latch. Each time the RADAR module senses an object in close proximity, it toggles the state of the latch. The latch then controls a transistor that switches the power for the speakers.

Overall it’s a build that combines a modern integrated RADAR module with some very simple control logic to create a functional build. Of course, there’s so much more you can do with some 74-series logic. Video after the break.

Continue reading “RADAR Controlled Speakers”

Microswitches: Past the Tipping Point

You find them everywhere from 3D printers to jet airliners. They’re the little switches that detect paper jams in your printer, or the big armored switches that sense when the elevator car is on the right floor. They’re microswitches, or more properly miniature snap-action switches, and they’re so common you may never have wondered what’s going on inside them. But the story behind how these switches were invented and the principle of physics at work in the guts of these tiny and useful switches are both pretty interesting.

Continue reading “Microswitches: Past the Tipping Point”