Robo Squid Will Take Over the Seas!

Robotic Octopus To Take Over The Seas

Much of robotics has been advanced by recreating animals movements – Why reinvent the wheel when nature got it right first? But have you seen many aquatic creatures movements re-imagined with mechanical linkages? The Foundation for Research and Technology-Hellas (FORTH) has recently presented their robotic octopus at the International Conference on Intelligent Robots and Systems.

The eight armed (or is it legged?) roboctopus was based on of a real octopus which have a really cool method of propulsion which allows them to move at speeds of up to 40km/h. The researchers in Greece created slim silicon arms to recreate this movement, allowing their robot to propel itself at speeds of around 10cm/s — after adding webs to the arms, they were able to almost double its top speed to 18cm/s, or one-half its body length per second.

The cool thing about the bot is that other marine wild-life seem relatively unperturbed by it, which could open up many possibilities in underwater research!

Continue reading “Robotic Octopus To Take Over The Seas”

Leap motion controller plus oculus rift

Interacting With Virtual Reality Brings Us Even Closer To A Real Holodeck

One of our readers has been playing around with virtual reality lately, and has come up with a pretty cool beta run of his research — virtual interaction using your hands.

Using an Oculus Rift, the Leap Motion controller and a beta run of Unity 4.6, [Tomáš Mariančík] put together a test environment for physical interaction. The Leap Motion controller is capable of tracking your fingers with extremely high detail, which allows him to create a pair of virtual hands inside the test environment that almost perfectly mimic his movements. The hack here is making it all work together.

In the following demo he shows off by interacting with holographic menus, grabbing body parts off of anatomically correct human being (thanks to Unity3D), and manipulating his environment.

Continue reading “Interacting With Virtual Reality Brings Us Even Closer To A Real Holodeck”

Invisibility cloaking with lenses

Invisibility Achieved With A Few Clever Focal Points

Students at the University of Rochester have developed a clever optical system which allows for limited invisibility thanks to a bit of optic sorcery physics.

Almost all invisibility technologies work by taking light and passing it around the object as if it were never there. The problem is, a lot of these methods are very expensive and not very practical — and don’t even work if you change your perspective from a head on view.

[Joseph Choi] figured out you can do the same thing with four standard achromatic lenses with two different focal lengths. The basic concept is each lens causes the light to converge to a tiny point  in between itself and the next lens — at which point it begins to diverge again, filling the following lens. This means the cloaked area is effectively doughnut shaped around the tightest focal point — if you block the center point of the lens, it won’t work. But everything around the center point of the lens? Effectively invisible. Take a look at the following setup using lasers to show the various focal points and “invisibility zones”.

Continue reading “Invisibility Achieved With A Few Clever Focal Points”

Tetris on your wrist!

Ardubracelet Lets You Play Tetris On Your Wrist!

Making your own Tetris game is almost a rite of passage for hackers — [Kevin] has stepped up the game a little by making this awesome-flexible-triple-displayed-Tetris-watch dubbed the Ardubracelet.

At the recent Maker Faire SF our head editor [Mike] got a chance to meet with [Kevin] from Arduboy who told us about some of his upcoming projects — this wearable was one of them!

It features three super bright OLED screens on a flexible circuit board with conductive touch buttons to continue with the minimalist design. Instead of a wrist strap he’s actually made the ends magnetic to hold it in place — did we mention the battery also lasts for over 10 hours?

At the heart of the flexible circuit board is an Atmega328p, which is the same chip used in the Arduboy (a credit card sized GameBoy). This is just the first prototype but he’s planning on making it even better in the future complete with Bluetooth and some 3D printed parts to make it look a bit nicer.

Continue reading “Ardubracelet Lets You Play Tetris On Your Wrist!”

Power Glove LED Suit

Prototype LED Light Suit Runs Off Of A NES Power Glove

[Greg’s] been playing around with wearable hacks for quite some time now, and he’s decided to add a new twist for his latest LED light suit (Mk 4) — An ancient NES Power Glove to control it.

He was inspired by the band Hypercrush who had a music video where one of the guys was wearing a laser-shooting power glove — awesome. Having already made light suits before, he thought it’d be fun to do something similar.

The suit is controlled by an Arduino Pro Mini which has been hacked into the Power Glove for ultimate button pushing capabilities. He’s using 5 meter LED strips of the classic WS2812  RGB variety, which allow for individual LEDs to be addressed using a single pin. It’s powered by a 5V 2A USB battery pack, and he’s made all the components very modular, you could even say it’s “plug and play”!

Continue reading “Prototype LED Light Suit Runs Off Of A NES Power Glove”

AUTOMATIC DOG FEEDER

The Thurber Feeder 5000 Helps To Slow Fido Down

Does your dog eat too fast? [Thurber] does, and he even chokes occasionally while snarfing down the kibble — naturally this worried his owners, so [Jason] stepped up to the challenge to slow him down. Introducing the Thurber Feeder 5000.

[Jason] is a seasoned maker, and has built a few CNC machines in his day — he’s even automated an Etch a Sketch with stepper motors. Making the Thurber Feeder 5000 was a piece of cake. He designed the entire thing in 3D CAD and then used his home-made CNC machine to cut out all the parts, 3D printing a few of the more complex mounting brackets.

It’s a fairly simple device consisting of a food hopper (seal-able to keep Thurber away), a stepper motor and an auger bit borrowed from a chocolate fondue fountain. The stepper goes through a 6:1 belt pulley ratio which gives it a whopping 200 oz-in of torque to push those kibbles and bits through the feeding pipe. The speed is adjustable by programming the Parallax Propeller, so once they found an acceptable eating speed [Jason] set it as default. A single button turns it on, and while the machine is running it lights up — turning off when little [Thurber] is done.

Continue reading “The Thurber Feeder 5000 Helps To Slow Fido Down”

Water powered flash light

A Water Activated Flashlight?

We’ve all seen lemon batteries or potato clocks, but have you ever seen a water activated battery?

[Nathan Stubblefield] was an American inventor (born 1860) who never got quite as much recognition as some of the other great inventors of the time, [Tesla, Bell, Edison etc] — though he did demonstrate some very interesting wireless telephony technology. In addition to dabbling with invisible radio waves, [Stubblefield] filed a patent for something called an Earth Battery, which makes use of two coils of dissimilar materials (a voltaic couple) submerged in water (or moist earth). As you can imagine, it wasn’t overly effective, nor efficient by any means — but it worked.

[Lasersaber] has been playing around with the “Stubblefield Coil” recently, and designed a working flashlight using the theory. He designed a 3D printed coil holder which allows you to easily wrap copper and magnesium strips around it to create the coil. Three of these cells go together in series to produce your water battery (and handle of the flashlight).

Continue reading “A Water Activated Flashlight?”