Can Hackers Bring Jooki Back To Life?

Another day, another Internet-connected gadget that gets abandoned by its creators. This time it’s Jooki — a screen-free audio player that let kids listen to music and stories by placing specific tokens on top of it. Parents would use a smartphone application to program what each token would do, and that way even very young children could independently select what they wanted to hear.

Well, until the company went bankrupt and shutdown their servers down, anyway. Security researcher [nuit] wrote into share the impressive work they’ve done so far to identify flaws in the Jooki’s firmware, in the hopes that it will inspire others in the community to start poking around inside these devices. While there’s unfortunately not enough here to return these devices to a fully-functional state today, there’s several promising leads.

Continue reading “Can Hackers Bring Jooki Back To Life?”

Open Source Framework Aims To Keep Tidbyt Afloat

We recently got a note in the tips line from [Tavis Gustafson], who is one of the developers of Tronbyt — a replacement firmware and self-hosted backend that breaks the Tidbyt smart display free from its cloud dependency. When they started the project, [Tavis] says the intent was simply to let privacy-minded users keep their data within the local network, which was itself a goal worthy enough to be featured on these pages.

But now that Tidbyt has been acquired by Modal and has announced they’ll no longer be producing new units, things have shifted slightly. While the press release says that the Tidbyt backend is going to stay up and running for existing customers, the writing is clearly on the wall. It’s now possible that the Tronbyt project will be able to keep these devices from ending up in landfills when the cloud service is inevitably switched off, especially if they can get the word out to existing users before then.

What’s that? You say you haven’t heard of Tidbyt? Well, truth be told, neither had we. So we did some digging, and this is where things get really interesting.

Continue reading “Open Source Framework Aims To Keep Tidbyt Afloat”

Keep Tabs On Your Vehicle’s Needs With LubeLogger

It doesn’t matter if its a Vespa or a Peterbilt truck — if you ignore the maintenance needs of your vehicle, you do so at your own peril. But it can be difficult enough to keep track of basic oil changes, to say nothing of keeping records on what parts were changed when. Instead of cramming more receipts into your glove box, maybe give LubeLogger a try.

This free and open source software tool is designed to make it easy for individuals to keep track of both the routine maintenance needs of their vehicles, as well as keep track of any previous or upcoming repairs and upgrades. Released under the MIT license, LubeLogger is primarily distributed as a Docker image that makes it easy to self-host the tool should you wish to keep your data safe at home rather than on somebody’s server out in the Wild West of the modern Internet.

Continue reading “Keep Tabs On Your Vehicle’s Needs With LubeLogger”

AqMood Is An Air Quality Monitor With An Attitude

You take your air quality seriously, so shouldn’t your monitoring hardware? If you’re breathing in nasty VOCs or dust, surely a little blinking LED isn’t enough to express your displeasure with the current situation. Luckily, [Tobias Stanzel] has created the AqMood to provide us with some much-needed anthropomorphic environmental data collection.

To be fair, the AqMood still does have its fair share of LEDs. In fact, one might even say it has several device’s worth of  them — the thirteen addressable LEDs that are run along the inside of the 3D printed diffuser will definitely get your attention. They’re sectioned off in such a way that each segment of the diffuser can indicate a different condition for detected levels of particulates, VOCs, and CO2.

But what really makes this project stand out is the 1.8 inch LCD mounted under the LEDs. This display is used to show various emojis that correspond with the current conditions. Hopefully you’ll see a trio of smiley faces, but if you notice a bit of side-eye, it might be time to crack a window. If you’d like a bit more granular data its possible to switch this display over to a slightly more scientific mode of operation with bar graphs and exact figures…but where’s the fun in that?

[Tobias] has not only shared all the files that are necessary to build your own AqMood, he’s done a fantastic job of documenting each step of the build process. There’s even screenshots to help guide you along when it’s time to flash the firmware to the XIAO Seeed ESP32-S3 at the heart of the AqMood.

If you prefer your air quality monitoring devices be a little less ostentatious, IKEA offers up a few hackable models that might be more your speed.

Custom Slimline CD Player Hides Out Under Speaker

In the era of digital streaming, the market is full of wireless speakers that will play content from your smartphone or pull it down from the Internet directly over WiFi. But if you’re feeling a bit nostalgic and want to throw on one of your old CDs, well, you might have a problem. That’s the situation [Chad Boughton] recently found himself in, so he decided to build a compact CD player that could discreetly connect up to his fancy Klipsch speaker.

The optical drive itself was the easy part, as [Chad] already had a laptop-style drive in an external enclosure that he could liberate. But of course, the speaker wouldn’t know what to do with an external disc drive, so there needed to be an intermediary. Enter the Raspberry Pi.

It might not look like it at first glance, but that’s a Pi 3 tucked into the back of the 3D printed frame. It would have been too tall in its original configuration, so [Chad] removed the USB and Ethernet ports; a modification we’ve covered in the past. Of course, he still needed to use the USB ports, so he ended up soldering the two cables — one to the CD drive and the other to the back of the speaker — directly to the Pi.

When plugged into the Raspberry Pi, the Klipsch speaker shows up as a USB audio device, so the software side of things was relatively simple. [Chad] installed VLC to handle CD playback, but he still needed a way to control everything. To that end, a IR receiver hooked up to the Pi’s GPIO pins means the Pi can detect the signals coming from the speaker’s original remote and pass the appropriate command on to VLC. The whole thing is very well integrated, and you could be forgiven for thinking it might be some kind of stock upgrade module at first glance.

Despite recently celebrating its 40th birthday, the CD is unlikely to completely disappear from our lives anytime soon. Manufacturers can turn their back on the standard if they want, but so long as folks still want to play them, they’ll keep coming up with inventive ways to make it happen.

Continue reading “Custom Slimline CD Player Hides Out Under Speaker”

Rolling Foam Cutter Gives Mattress A Close Shave

There’s many different reasons why somebody might have to hack together their own solution to a problem. It could be to save money, or to save time. Occasionally it’s because the problem is unique enough that there might not be an accepted solution, so you’re on your own to create one. We think the situation that [Raph] recently found himself in was a combination of several of these aspects, which makes his success all the sweeter.

The problem? [Raph] had a pair of foam mattresses from his camper van that needed to be made thinner — each of the three inch (7.62 cm) pieces of foam needed to have one inch (2.5 cm) shaved off as neatly and evenly as possible. Trying to pull that off over the length of a mattress with any kind of manual tools was obviously a no-go, so he built a low-rider foam cutter.

With the mattresses laying on the ground, the idea was to have the cutter simply roll across them. The cutter uses a 45″ (115 cm) long 14 AWG nichrome wire that’s held in tension with a tension arm and bungee cords, which is juiced up with a Volteq HY2050EX 50 V 20 A variable DC power supply. [Raph] determined the current experimentally: the wire failed at 20 A, and cutting speed was too low at 12 A. In the end, 15 A seemed to be the sweet spot.

The actual cutting process was quite slow, with [Raph] finding that the best he could do was about 1/8″ (3 mm) per second on the wider of the two mattresses. While the result was a nice flat cut, he does note that at some point the mattresses started to blister, especially when the current was turned up high. We imagine this won’t be a big deal for a mattress though, as you can simply put that side on the bottom.

In the end, the real problem was the smell. As [Raph] later discovered, polyurethane foam is usually cut mechanically, as cutting it with a hot wire gives off nasty fumes. Luckily he had plenty of ventilation when he was making his cuts, but he notes that the mattresses themselves still have a stink to them a couple days later. Hopefully they’ll finish outgassing before his next camping trip.

As you can imagine, we’ve covered a great number of DIY foam cutters over the years, ranging from the very simple to computerized marvels. But even so, there’s something about the project-specific nature of this cutter that we find charming.

Acoustic Levitation Gets Insects Ready For Their Close-Up

The average Hackaday reader is likely at least familiar with acoustic levitation — a technique by which carefully arranged ultrasonic transducers can be used to suspend an object in the air indefinitely. It’s a neat trick, the sort of thing that drives them wild at science fairs, but as the technique only works on exceptionally small and light objects it would seem to have little practical use.

That is, unless, you happen to be interested in exceptionally small and light objects. A paper titled Automated Photogrammetric Close-Range Imaging System for Small Invertebrates Using Acoustic Levitation describes a fascinating device which allows the researchers to image insects in what’s essentially a weightless environment.

With the delicate specimens suspended in front of the lens, there’s no background to worry about and they can be perfectly lit from all angles. What’s more, with careful control of the ultrasonic transducers, it’s possible to control the rotation of the target — allowing researchers to produce 3D scans of the insects using just one camera.

There isn’t a whole lot of technical detail on the device itself, other than the fact that spherical chamber has a radius of 60 mm and is fitted with 96 Murata MA40S4R/S transducers operating at 40 kHz. The paper notes that early attempts to control the transducer array with a Arduino Mega failed, and that the team had to switch over to a FPGA. With their current signal generator stage, the researchers are able to rotate the specimen by 5° angles.

Interested in learning more about acoustic levitation? University of Bristol research scientist Asier Marzo gave a talk on the subject at Hackaday Belgrade in 2018 that you won’t want to miss.