The Worsening Raspberry Pi RP2350 E9 Erratum Situation

There’s currently a significant amount of confusion around the full extent of the GPIO hardware issue in the Raspberry Pi RP2350 microcontroller, with [Ian] over at [Dangerous Prototypes] of Bus Pirate fame mentioning that deliveries of the RP2350-based Bus Pirate 5XL and 6 have been put on hold while the issue is further being investigated. Recorded in the MCU’s datasheet as erratum RP2350-E9, it was originally reported as only being related to the use of internal pull-downs, but [Ian] has since demonstrated in the primary issue ticket on GitHub that the same soft latching behavior on GPIO pins occurs also without pull-downs enabled.

Ian from Dangerous Prototypes demonstrating the RP2350-E9 issue in a Bus Pirate prototype without pull-ups.
Ian from Dangerous Prototypes demonstrating the RP2350-E9 issue in a Bus Pirate prototype without pull-ups.

When we first reported on this hardware bug in the RP2350’s A2 (and likely preceding) stepping there was still a lot of confusion about what this issue meant, but so far we have seen the Bus Pirate delay and projects like [Agustín Gimenez Bernad]’s LogicAnalyzer have opted for taking the RP2350 port out back. There are also indications that the ADC and PIO peripherals are affected by this issue, with workarounds only partially able to circumvent the hardware issue.

In the case of the Bus Pirate a potential workaround is the addition of 4.7 kOhm external pull-downs, but at the cost of 0.7 mA continuous load on the GPIO when pulled high and part of that when pulled low. It’s an ugly hack, but at the very least it might save existing boards. It also shows how serious a bug this is.

Meanwhile there are lively discussions about the issue on the Raspberry Pi forums, both on the E9 erratum as well as the question of when there will be a new stepping. The official statement by Raspberry Pi is still that ‘they are investigating’. Presumably there will be a Bx stepping at some point, but for now it is clear that the RP2350’s A2 stepping is probably best avoided.

Hardware Bug In Raspberry Pi’s RP2350 Causes Faulty Pull-Down Behavior

Erratum RP2350-E9 in the RP2350 datasheet, detailing the issue.
Erratum RP2350-E9 in the RP2350 datasheet, detailing the issue.

The newly released RP2350 microcontroller has a confirmed new bug in the current A2 stepping, affecting GPIO pull-down behavior. Listed in the Raspberry Pi RP2350 datasheet (page 1340) as erratum RP2350-E9, it involves a situation where a GPIO pin is configured as a pull-down with input buffer enabled. After this pin is then driven to Vdd (e.g. 3.3V) and then disconnected, it will stay at around 2.1 – 2.2 V for a Vdd of 3.3V. This issue was discovered by [Ian Lesnet] of [Dangerous Prototypes] while working on an early hardware design using this MCU.

The suggested workaround by Raspberry Pi is to enable the input buffer before a read, and disable it again immediately afterwards. Naturally, this is far from ideal workaround, and the solution that [Ian] picked was to add external pull-down resistors. Although this negates the benefits of internal pull-down resistors, it does fix the issue, albeit with a slightly increased board size and BOM part count.

As for the cause of the issue, Raspberry Pi engineer [Luke Wren] puts the blame on an external IP block vendor. With hindsight perhaps running some GPIO validation tests involving pull-up and pull-down configurations with and without input buffer set could have been useful, but we’re guessing they may be performed on future Pi chips. Maybe treating the RP2350 A0 stepping as an ‘engineering sample’ is a good idea for the time being, with A3 (or B0) being the one you may want to use in actual production.

In some ways this feels like déjà vu, as the Raspberry Pi 4 and previous SBCs had their own share of issues that perhaps might have been caught before production.

(Note: original text listed A0 as current stepping, which is incorrect. Text has been updated correspondingly)

Cost-Optimized Raspberry Pi 5 Released With 2 GB RAM And D0 Stepping

When the Raspberry Pi 5 SBC was released last year, it came in 4 and 8 GB RAM variants, which currently retail from around $80 USD and €90 for the 8 GB variant to $60 and €65 for the 4 GB variant. Now Raspberry Pi has announced the launch of a third Raspberry Pi 5 variant: a 2 GB version which also features a new stepping of the BCM2712 SoC. This would sell for about $50 USD and feature the D0 stepping that purportedly strips out a lot of the ‘dark silicon’ that is not used on the SBC.

These unused die features are likely due to the Broadcom SoCs used on Raspberry Pi SBCs being effectively recycled set-top box SoCs and similar. This means that some features that make sense in a set-top box or such do not make sense for a general-purpose SBC, but still take up die space and increase the manufacturing defect rate. The D0 stepping thus would seem to be based around an optimized die, with as only possible negative being a higher power density due to a (probably) smaller die, making active cooling even more important.

As for whether 2 GB is enough for your purposes depends on your use case, but knocking $10 off the price of an RPi 5 could be worth it for some. Perhaps more interesting is that this same D0 stepping of the SoC is likely to make it to the other RAM variants as well. We’re awaiting benchmarks to see what the practical difference is between the current C1 and new D0 steppings.

Thanks to [Mark Stevens] for the tip.

Can You Hack The RP2350? There’s $10,000 On The Line

The Raspberry Pi Foundation had their new RP2350 chip audited by Hextree.io, and now, both companies want to see if you can hack it. Just to prove that they’re serious, they’re putting out a $10,000 bounty. Can you get inside?

The challenge to hack the chip is simple enough. You need to dump a secret that is hidden at OTP ROW 0xc08. It’s 128 bits long, and it’s protected in two ways—by the RP2350’s secure boot and by OTP_DATA_PAGE48_LOCK1. Basically, the chip security features have been activated, and you need to get around them to score the prize.

The gauntlet was thrown down ahead of DEF CON, where the new chip was used in the event badges. Raspberry Pi and Hextree.io invited anyone finding a break to visit their booth in the Embedded Systems Village. It’s unclear at this stage if anyone claimed the bounty, so we can only assume the hunt remains open. It’s been stated that the challenge will run until 4 PM UK time on September 7th, 2024.

Hacking microcontrollers is a tough and exacting art. The GitHub repo provides full details on what you need to do, with the precise rules, terms, and conditions linked at the bottom. You can also watch the challenge video on Hextree.io.

Raspberry Has A New Pico, Built With The New RP2350

Raspberry Pi’s first foray into the world of microcontrollers, the RP2040, was a very interesting chip. Its standout features were the programmable input/output units (PIOs) which enabled all sorts of custom real-time shenanigans. And that’s not to discount the impact of the Pi Pico, the $4 dev kit built around it.

Today, they’re announcing a brand-new microcontroller: the RP2350. It will come conveniently packaged in the new Pi Pico 2, and there’s good news and bad news. The good news is that the new chip is better in every way, and that the Pico form factor will stay the same. The bad news? It’s going to cost 25% more, coming in at $5. But in exchange for the extra buck, you get a lot.

For starters, the RP2350 runs a bit faster at 150 MHz, has double the on-board RAM at 520 kB, and twice as much QSPI flash at 4 MB. And those sweet, sweet PIOs? Now it has 12 instead of just 8. (Although we have no word yet if there is more program space per PIO – even with the incredibly compact PIO instruction set, we always wanted more!)

Two flavors on the same chip: Arm and RISC

As before, it’s a dual-core chip, but now the cores are Arm Cortex M33s or RISC-V Hazard3s. Yes, you heard that right, there are two pairs of processors on board. Raspberry Pi says that you’ll be able to select which style of cores runs either by software or by burning one-time fuses. So it’s not a quad core chip, but rather your choice of two different dual cores. Wild!

Raspberry Pi is also making a big deal about the new Arm TrustZone functionality. It has signed boot, 8 kB of OTP key-storage memory, SHA-256 acceleration, a hardware RNG, and “fast glitch detectors”. While this is probably more aimed at industry than at the beginning hacker, we’re absolutely confident that some of you out there will put this data-safe to good use.

There is, as of yet, no wireless built in. We can’t see into the future, but we can see into the past, and we remember that the original Pico was wireless for a few months before they got the WiFi and Bluetooth radio added into the Pico W. Will history repeat itself with the Pico 2?

We’re getting our hands on a Pico 2 in short order, and we’ve already gotten a sneak peek at the extensive software toolchain that’s been built out for it. All the usual suspects are there: Picotool, TinyUSB, and OpenOCD as we write this. We’ll be putting it through its paces and writing up all the details next week.

Displays We Love Hacking: DSI

We would not be surprised if DSI screens made up the majority of screens on our planet at this moment in time. If you own a smartphone, there’s a 99.9% chance its screen is DSI. Tablets are likely to use DSI too, unless it’s eDP instead, and a smartwatch of yours definitely will. In a way, DSI displays are inescapable.

This is for a good reason. The DSI interface is a mainstay in SoCs and mobile CPUs worth their salt, it allows for higher speeds and thus higher resolutions than SPI ever could achieve, comparably few pins, an ability to send commands to the display’s controller unlike LVDS or eDP, and staying low power while doing all of it.

There’s money and power in hacking on DSI – an ability to equip your devices with screens that can’t be reused otherwise, building cooler and cooler stuff, tapping into sources of cheap phone displays. What’s more, it’s a comparably underexplored field, too. Let’s waste no time, then!

Decently Similar Internals

DSI is an interface defined by the MIPI Alliance, a group whose standards are not entirely open. Still, nothing is truly new under the sun, and DSI shares a lot of concepts with interfaces we’re used to. For a start, if you remember DisplayPort internals, there are similarities. When it comes to data lanes, DSI can have one, two or four lanes of a high-speed data stream; smaller displays can subsist with a single-lane, while very high resolution displays will want all four. This is where the similarities end. There’s no AUX to talk to the display controller, though – instead, the data lanes switch between two modes.

Continue reading “Displays We Love Hacking: DSI”

Raspberry Pi Goes Public

We’ve heard rumors for the last few months, and now it looks like they’ve come true: the business side of Raspberry Pi, Raspberry Pi Holdings has become a publicly listed company on the London Stock Exchange.

We heard rumblings about this a while back, and our own [Jenny List] asked the question of what this means for the hobbyist and hacker projects that use their products. After all, they’ve been spending a lot of money making new silicon, and issuing stock helps them continue. Jenny worried that they’d forget that what sells their hardware is the software, but ends up concluding that they’ll probably continue doing more of the same thing, just with better funding.

Raspberry Pi CEO [Eben Upton] said basically the same when we asked him what a floatation would mean for the Raspberry Pi Foundation, which is the non-profit arm of the Raspberry Empire, and which is responsible for a lot of the educational material and outreach that they do. (Fast-forward to minute 40.) Before the share issue, the Foundation wholly owned Holdings, and received donations to fund its work. Now that there has been a floatation, it looks like the Foundation will owns 70% of Holdings, and will use this endowment to finance its educational mission.

We don’t have a crystal ball, but we suspect this changes not much at all. Raspberry Pi Holdings Ltd is doing great business by producing niche single-board computers that appeal both to the hacker and industrial markets, and the Raspberry Pi Foundation now has a more concrete source of funding to continue its educational goals. But the future will tell!