Pick Up The Ball And Run With It

Once in a while we get to glimpse how people build on each other’s work in unexpected and interesting ways. So it is with the GateBoy project, a gate-level emulator built from die shots of the original Game Boy processor. The thing is, [Austin Appleby] didn’t have to start by decapping and taking photos of the chip. He didn’t even have to make his own schematics by reverse engineering those structures. Someone else had already done that and made it available for others to use. A couple of years back, [Furrtek] started manually tracing out the DMG chip and posted schematics to the DMG-CPU-Inside repo, kindly licensing it as CC-BY-SA 4.0 to let people know how they can use the info.

But playing Game Boy games isn’t actually the end game of [Austin’s] meticulous gate-level recreation. He’s using it to build “a set of programming tools that can bridge between the C/C++ universe used by software and the Verilog/VHDL universe used by hardware.” A new tool has been born, not for gaming, but for converting a meta language that assigns four-letter codes to gate structures (somewhat reminiscent of DNA sequences) and will eventually convert them to your choice of C++ or a Hardware Description Language for use with FPGAs.

The open source community is playing four-dimensional football. Each project moves the ball downfield, but some of them add an additional goal in an alternate hardware universe — advancing the aims of both (like finding and fixing some errors in [Furrtek’s] original schematics).

Of course the real challenge is getting the word out that these projects exist and can be useful for something you’re working on. For instance, [Neumi’s] depth sounding rowboat allows an individual to make detailed depth maps of lakes, rivers, and the like. It was in the comments that the OpenSeaMap project was brought up — a site working to create crowd sourced waterway charts. It’s the perfect place for [Neumi] to get inspiration, and help move that ball toward a set of goals.

How do we get the word out so more of these connections happen? We’ll do our part here at Hackaday. But it’s the well-document and thoughtfully-licensed projects that set the up playing field in the first place.

A flip-top foundry for metal casting

Flip-Top Foundry Helps Manage The Danger Of Metal Casting

Melting aluminum is actually pretty easy to do, which is why it’s such a popular metal for beginners at metal casting. Building a foundry that can melt aluminum safely is another matter entirely, and one that benefits from some of the thoughtful touches that [Andy] built into his new propane-powered furnace. (Video, embedded below.)

The concern for safety is not at all undue, for while aluminum melts at a temperature that’s reasonable for the home shop, it’s still a liquid metal that will find a way to hurt you if you give it half a chance. [Andy]’s design minimizes this risk primarily through the hands-off design of its lid. While most furnaces have a lid that requires the user to put his or her hands close to the raging inferno inside, or that dangerously changes the center of mass of the whole thing as it opens, this one has a fantastic pedal-operated lid that both lifts and twists. Leaving both hands free to handle tongs is a nice benefit of the design, too.

The furnace follows a lot of the design cues we’ve seen before, starting as it does with an empty party balloon helium tank. The lining is a hydrid of ceramic blanket material and refractory cement; another nice safety feature is the drain channel cast into the floor of the furnace in case of a cracked crucible. The furnace is also quite large, at least compared to [Andy]’s previous DIY unit, and has a sturdy base that aids stability — another plus in the safety column.

Every time we see a new furnace design, we get the itch to start getting into metal casting. And with the barrier to entry as low as a KFC bucket or an old fire extinguisher, why not give it a try? Although it certainly pays to know what can go wrong before diving in.

Continue reading “Flip-Top Foundry Helps Manage The Danger Of Metal Casting”

Save That Old VGA Monitor From The Trash

It’s quite a while since any of us unpacked a brand new VGA monitor, but since so many machines still have the ability to drive them even through an inexpensive adaptor they’re still something that finds a use. With so many old VGA flat panel monitors being tossed away they even come at the low low price of free, which can’t be argued with. CNXSoft’s [Jean-Luc Aufranc] was tasked with fixing a dead one, and wrote an account of his progress.

Seasoned readers will no doubt be guessing where this story will lead, as when he cracked it open and exposed the PSU board there was the tell-tale puffiness of a failed electrolytic capacitor. For relative pennies a replacement was secured, and the monitor was fixed. As repair hacks go it’s a straightforward one, but still worth remarking because a free monitor is a free monitor.

We called the demise of VGA back in 2016, and have seen no reason to go back on that. But for those of us left with a few legacy monitors it’s worth remembering that DVI and thus the DVI compatibility mode of HDMI is little more than a digitised version of the R, G, and B channels you’d find on that trusty blue connector. Maybe that little dongle doesn’t make such a bad purchase, and of course you can also use it as an SDR if you want.

Two circuit boards with bright seven segment displays

Retro Stereo SID Synth Looks And Sounds Sensational

Over the years, plenty of work has gone into emulating the Commodore 64 6581 SID chip, but as [SlipperySeal] puts it, nothing beats the real thing. His take on the MIDI SID-based synth not only sounds fantastic, but looks the business.

The 6581 SID arguably blessed the Commodore 64 with some of the best sound capabilities of any home computer in the 8-bit era (make sure to ‘sound off’ in the comments if you disagree). The 6581 was a three-voice analog synth with a dizzying array of settings. This was at a time when most home computers could just about manage a ‘beep’ of varying lengths and frequencies.

When you mix MIDI with the capabilities of the SID, you get something like [SlipperySeal]’s awesome looking synth, known as ‘Monty’. While the road to this point unfortunately resulted in several blown-up SID chips, the sacrifice seems to have paid off.

Realizing the limitations of having ‘just’ three voices, Monty is designed to use two SID chips in parallel, for a total of six voices in pleasing stereo sound. MIDI commands are transferred to the dual SIDs by way of an ATmega1284p microcontroller. The SID is well understood by this point, and [SlipperySeal] goes into great detail explaining the fundamentals of SID programming over on GitHub.

This isn’t the first MIDI synth that is based around the C64 SID chip, but [SlipperySeal] made sure that his stood out from the crowd. The seven-segment display centered on the board makes for a delightfully simple visualizer, an effect that looks even better when running two Monty boards at once, each responding to alternate MIDI channels (check out the video below). Naturally, we’re also fans of projects that include ominous, cryptic keyswitches.

Continue reading “Retro Stereo SID Synth Looks And Sounds Sensational”

GNU Radio Decodes Voyager Data

With the 44th anniversary of the launch of Voyager I, [Daniel] decided to use GNU Radio to decode Voyager data. The data isn’t live, but a recording from the Green Bank Telescope. The 16 GB file is in GUPPI format which stores raw IQ samples.

The file contains 64 frequency channels of just under 3MHz each. The signal of interest is in one channel, so it is easy to just throw away the rest of the data.

Continue reading “GNU Radio Decodes Voyager Data”

Robert Murray Smith Discusses Rivets and Riveting

Old School Fastener Tutorial Is Riveting

Whether you’re making, repairing, or hacking something together, we all need fastners. Screws, nuts and bolts, and pop rivets are handy sometimes. Various resins and even hot glue are equally useful. In some cases however the right fastener for the job eludes us, and we need another trick up our sleeve.

[Robert Murray Smith] found himself in such a position. His goal was to join two pieces of aluminum that need a nice finish on both sides. Neither glue, pop rivets, screws, nuts or bolts would have been appropriate.  [Robert] is always flush with ideas both new and old, and he resorted to using an old school fastener as explained as explained in his video “How To Make And Use Rivets“.

In the video below the break, [Robert] goes into great detail about making a simple rivet die from a 5mm (3/16”) piece of flat steel, creating the rivet from a brass rod, and then using the flush rivet to join two pieces of aluminum. The simple tooling he uses makes the technique available to anybody with a propane torch, a vise, some basic tools, and a simple claw hammer. We also appreciate [Robert]’s discussion of cold riveting, hot riveting, and annealing the rivets as needed.

Not only is riveting a technique thousands of years old, its advancement and application during the Industrial Revolution enabled technologies that couldn’t have existed otherwise. Hackaday’s own [Jenny List] did a wonderful write up about rivets in 2018 that you won’t want to miss!

Continue reading “Old School Fastener Tutorial Is Riveting”

the 3 needle ammeters that make up the face of the clock

IC Clock Uses Ammeters For A Unique Time-Telling Display

It is a rite of passage for hackers to make a clock out of traditionally not-clock items. Whether it be blinking LEDs or servos to move the hands, we have all crafted our own ways of knowing when it currently is. [SIrawit] takes a new approach to this, by using ammeters to tell the time.

The clock is built using mostly CMOS ICs. A CD4060 generates the 1HZ clock signal, which is then passed to parallel counters to keep track of the hours, minutes, and seconds. [SIrawit] decided to keep the ammeters functioning as intended, rather than replacing the internals and just keeping the needle and face. To convert the digital signal to a varying current, he used a series of MOSFETs connected in parallel to the low side of the ammeters, with different sizes of current-limiting resistors. By sizing these resistors properly, precise movement of the needle could be achieved by turning on or off the MOSFETs. You can see the schematics and learn more about how this is achieved on the project’s GitHub page (at the time of writing, the most recent commits are in the ‘pcb’ branch).

In addition to the custom PCB that holds all the electronics, PCBs help make up the case as well. While the main body of the case is made out of a repurposed junction box, [SIrawit] had a PCB on an aluminum substrate manufactured for the front panel. While the board has no actual traces or electrical significance, this makes for a cheap and easy way to get a precisely cut piece of aluminum for your projects, with a sharp-looking white solder mask to boot.

We love to see cool and unique ways to tell the time, such as using Nixie Tubes to spell out the time in binary!

Continue reading “IC Clock Uses Ammeters For A Unique Time-Telling Display”