Hackaday Prize Entry: A Very Small Password Keeper

One of the more popular security builds in recent memory is USB password vaults. These small thumb drive-sized devices hold all the passwords you have to deal with, and are locked behind a authentication code on the drive itself. For their Hackaday Prize entry, [Miguel] and [Noel] asked how inexpensively one of these devices could be made. The answer, coming in the form of their Memtype project, is very inexpensively.

The Memtype project is based on the cheapest and most simplistic USB implementation on the planet. It’s built around an ATtiny85 and V-USB‘s software only implementation of a USB keyboard, requiring only a few resistors and diode in addition to the ‘tiny85 itself.

The device can only be unlocked with a four-digit pin, input through the clever use of a small SMD joystick. After inputting the correct code, the Memtype grants the user access to all the stored passwords. As far as security goes, [Miguel] and [Noel] have implemented NOEKEON in assembly, however it should be noted that all security is weaker than a pipe wrench. For managing the passwords, [Miguel] and [Noel] built a small, simple GUI app to set the PIN and write credentials to the device.

[Miguel] and [Noel] already have a demo video up for the Memtype, you can check that out below.

Continue reading “Hackaday Prize Entry: A Very Small Password Keeper”

Hackaday Prize Entry: Microscopy With Blu-ray

Confocal microscopy is an imaging technique that provides higher resolution micrographs than that of traditional optical microscopy. Confocal microscopes attain this higher resolution from an image sensor behind a pinhole. By eliminating out of focus light, and by scanning the specimen back and forth under the microscope, a very high resolution image may be produced. This technique has applications ranging from life sciences to semiconductor work. For this year’s Hackaday Prize, [andreas.betz] is building a confocal microscope using little more than a Blu-ray drive read head.

[andreas]’ build uses a standard Playstation 3 Blu-ray drive mechanism. The read head for this mechanism is well documented, but [andreas] still has to drive the laser and the voice coils for this machine to do anything. With the Blu-ray drive working, only the optics remained.

Just this last week, [andreas] imaged the die of a transistor with a resolution of about 680nm. An inductor was also imaged, showing a track separation of about 10um. This is approaching the limits of optical microscopy, and the apparatus is simple enough for anyone to replicate.

As a feat of technical ingenuity, this is a great project. It’s one of the best we’ve seen for the Citizen Science portion of the Hackaday Prize, and can’t wait to see what other images [andreas] can make with this machine.

The HackadayPrize2016 is Sponsored by:

Hackaday Prize Entry: Visualizing Magnetic Fields

In 1820, Hans Christian Oersted discovered the needle of a compass would deflect when placed next to a wire carrying an electric current. It took 15 years for the first electric motor to be invented following this observation. Humans are dumb, but perhaps they wouldn’t be so oblivious to the basic facts of our reality if they could see magnetic fields. Or if they just had a 3D printer. For his Hackaday Prize entry, [Ted Yapo] is doing just this: adding a magnetic field scanner to a 3D printer, allowing for the visualization of magnetic fields in three dimensions.

The device [Ted] is working on is actually extremely simple, and is mostly implemented in software. The hardware is just a 3D printer with a toolhead consisting of a HMC5883L magnetometer breakout board. This is the simplest and easiest way to find the direction and intensity of a magnetic field, the rest of the work is done in software.

Right now, [Ted] has a setup that will scan a 3D volume with a printer. By placing a magnet in the middle of the print bed, he can visualize the magnetic field inside the volume of his 3D printer. It’s a visualization that is vastly superior to a compass, ferrofluid, or even a mess of iron filings, and is surely a much better pedagogical apparatus for classrooms and science museums alike.

The HackadayPrize2016 is Sponsored by:

Hackaday Prize Entry: Electronic, Visual Harmonicas

[sholnkin] is tasked with teaching a kindergarten class how to play a musical instrument. No, not those cheap plastic recorders. [shlonkin] is teaching kindergarteners how to play the only instrument that both blows and sucks: the harmonica.

Unlike a classroom of kids with plastic recorders, where the fingering is either right or it isn’t, [shlonkin] needs to teach kids to put their mouth over the right hole, and suck or blow to produce a note. The classroom has a poster laying out the notes on the harmonica, but they needed something better. [shlonkin] envisioned a large illuminated sign that lit up in different colors, and could play the displayed notes with a speaker.

The high-level design for this project includes a Teensy 3.2 with the Audio Adapter breakout driving a small audio amp. The Teensy also controls a bunch of LEDs mounted inside a wooden case. The layout of these LEDs went surprisingly well, and it’s rare to find a backlit panel that is lit this evenly.

As a classroom musical teaching aid, this type of device has been around for decades – deep in the recesses of band rooms in schools across the world, you can find old Wurlitzer pianos with devices that aren’t much different from this simple device. It’s a pedagogical method that worked back then, and should work now.

The HackadayPrize2016 is Sponsored by:

Hackaday Advises The United Nations

The Convention on the Rights of Persons with Disabilities is being held this week at the United Nations in New York and Hackaday will be there. Sophi Kravitz is representing us as the conference discusses assistive technology.

Sophi’s panel is Thursday mid-day, entitled: Tec Talk: Brilliant New Designs in Assistive Technology, Ease of Use & Multimedia. The Hackaday community has become a world leader in thinking about new designs, implementations, and increased availability of assistive technologies. We’re really excited to have an organization like the UN recognize this trait. Congratulations on all of you who have spent time thinking about ways to make life better for a lot of people — you are making a difference in the world.

Most notable in this category is Eyedrivomatic, the eye-controlled electric wheelechair extension project which was selected as the winner of the 2015 Hackaday Prize. Awarded second prize last year was another notable project. OpenBionics designed an open source, easily manufactured, prosthetic hand. Hand Drive, a Best Product finalist from last year, developed a device to operate a wheelchair with a rowing motion. Like we said, the list goes on and on.

But of course our biggest accomplishments lie ahead. The 2016 Hackaday Prize is currently underway and again focusing on building something that matters. The current challenge is Citizen Scientist which focuses on making scientific experimentation, equipment, and knowledge more widely available. But on August 22nd we turn our sights to the topic of Sophi’s UN Panel as the Hackaday Prize takes on Assistive Technologies. Don’t wait until then, make this the summer you change peoples’ lives. Start your design now.

The HackadayPrize2016 is Sponsored by:

Hackaday Prize Entry: Micro Robots For Education

[Joshua Elsdon] and [Thomas Branch] needed a educational hardware platform that would fit into the constrained spaces and budgets of college classes. Because nothing out there that was cheap, simple and capable enough to fit their program, the two teachers for robotics at the Imperial College Robotics Society set out to build their own – and entered the Hackaday Prize with a legion of open source Micro Robots.

These small robots have a base area of 2 cmand a price tag of about £10 (about $14) each, once they are produced in quantities. They feature two onboard stepper motors, an RGB-LED, battery, a line-following sensor, collision-sensors and a bidirectional infrared transmitter for communicating with a master system, the ‘god bot’. The master system is based on a Raspberry Pi with little additional hardware. It multiplexes the IR-communication with all the little robots and simultaneously tracks their position and orientation through a camera, identifying them via their colored onboard LED. The master system also provides a programming interface for the robots, so that no firmware flashing procedure is required for students to get their code running. This is a well-designed, low-cost multi-robot system, and with onboard sensors, stepper motor odometry, and absolute positioning feedback, these little robots can be taught quite a few tricks.

Building tiny robots comes with a lot of regular-sized challenges, and we’re delighted to follow [Joshua Elsdon] and [Thomas Branch] on their journey from assembling the tiny PCBs over experimenting with 3D printing and casting techniques to produce the tiny wheels to the ROS programming. The diligent duo is present in the Hackaday prize twice: With their own Micro Robots project and with their contribution to the previously covered ODrive – an open source BLDC servo controller. We are already curious about their next feat! The below video shows a successful test of the camera feedback integration into the ROS.

The HackadayPrize2016 is Sponsored by:

Hackaday Prize Entry: Project Man-Cam

With cameras, robotics, VR-headsets, and wireless broadband becoming commodities, the ultimate, mobile telepresence system – “Surrogates” if you will – is just one footstep away. And this technology may one day solve a very severe problem for many disabled people: Mobility. [chris jones] sees great potential in remote experiences for disabled people who happen to not be able to just walk outside. His Hackaday Prize Entry Project Man-Cam, a clever implementation of “the second self”, is already indistinguishable from real humans.

Instead of relying on Boston Dynamic’s wonky hydraulics or buzzing FPV drones, [chris] figured that he could just strap a pan and tiltable camera to a real person’s chest or – for his prototyping setup shown above – onto a utility cart. This Man-Cam-Unit (MCU) then captures the live-experience and sends it back home for the disabled person to enjoy through a VR headset in real time. A text-based chat would allow the communication between the borrowed body’s owner and the borrower while movements of the head are mapped onto the pan and tilt mechanism of the camera.

Right now, [chris] is still working on getting everything just right, and even if telepresence robots are already there, it’s charming to see how available technology lets one borrow the abilities of the other.

The HackadayPrize2016 is Sponsored by: