Robomintoner Badminton Bot To Defeat Amateur Humans

Watching robots doing sports is pretty impressive from a technical viewpoint, although we secretly smile when we compare these robots’ humble attempts to our own motoric skills. Now, a new robot named Robomintoner seeks to challenge human players, and it’s already darn good at badminton.

Continue reading “Robomintoner Badminton Bot To Defeat Amateur Humans”

Hackaday Prize Entry: The Green Machine

For Hackers, rapid prototyping is made easier using basic building blocks such as the Raspberry Pi, Arduino and the huge variety of add on shields for home brew projects. But we don’t see too many real world Industrial applications or machines built using these off-the-shelf electronics. [SlyScience] built The Green Machine – an industrial grade, automated spray painting device to help coat polycarbonate tubes consistently.

The Green Machine is essentially a linear drive that can move a spray gun across a spinning clear tube and coat it evenly with the desired color. These tubes are used as color filters – they slide over standard T5, T8 or T12 fluorescent lamps – and are used in advertising, special effects, films and similar applications. For almost 10 years prior to this machine, the task was done manually. The HPLV (high pressure, low volume) spray gun used for this process needed skilled hands to get consistent results. It was easy to ruin a tube and cleaning them was not possible. [SlyScience] figured things out on the go – teaching himself and figuring out all of the software and hardware pieces of the puzzle. The welded steel frame is about the only “custom” part in this build. Everything else is COTS. Check out the video of The Green Machine in action below, and if you have any tips to help improve the build, chime in with your comments.

Continue reading “Hackaday Prize Entry: The Green Machine”

Threadless Ballscrew for 3D Printer

[2n2r5] posted up a mechanism that we’d never seen before — a threadless ballscrew that turns rotational into linear motion with no backlash. It works by pressing the edge of three bearings fairly hard up against a smooth rod, at an angle. The bearings actually squeeze the rod a little bit, making a temporary indentation in the surface that works just like a screw thread would. As the bearings roll on, the rod bounces back to its original shape. Watch it in action in the video below.

Continue reading “Threadless Ballscrew for 3D Printer”

3D Printed RC Servo to Linear Actuator Conversion

RC servos are handy when you need to rotate something. You can even modify them to rotate continuously if that’s what you need. However, [Roger Rabbit] needed linear motion, but wanted the simple control afforded by an RC servo. The solution? A 3D printed housing that converts a servo’s rotation into linear motion.

The actuator uses five different parts, a few screws, and a common RC servo. The video shows the actuator pushing and pulling a 200g load with a 6V supply. There’s some room for adjustment, so different servos should work.

Continue reading “3D Printed RC Servo to Linear Actuator Conversion”

Twisted String Actuators

[Travis] tells us about a neat actuator concept that’s as old as dirt. It’s capable of lifting 7kg when powered by a pager motor, and the only real component is a piece of string.

The concept behind the twisted string actuator, as it’s known to academia, is as simple as putting a motor on one end of a piece of string, tying the other end off to a load, and putting a few twists in the string. It’s an amazingly simple concept that has been known and used for thousands of years: ballistas and bow-string fire starters use the same theory.

Although the concept of a twisted string actuator is intuitively known by anyone over the age of six, there aren’t many studies and even fewer projects that use this extremely high gear ratio, low power, and very cheap form of linear motion. A study from 2012 (PDF) put some empirical data behind this simple device. The takeaway from this study is that tension on the string doesn’t matter, and more strands or larger diameter strands means the actuator shrinks with a fewer number of turns. Fewer strands and smaller diameter strands take more turns to shrink to the same length.

As for useful applications of these twisted string actuators, there are a few projects that have used these systems in anthropomorphic hands and elbows. No surprise there, really; strings don’t take up much space, and they work just like muscles and tendons do in the human body.

Thanks [ar0cketman] for the link.

Retrotechtacular: Fire Control Computers in Navy Ships

Here is a two-part Navy training film from 1953 that describes the inner workings of mechanical fire control computers. It covers seven mechanisms: shafts, gears, cams, differentials, component solvers, integrators, and multipliers, and does so in the well-executed fashion typical of the era.

Fire control systems depend on many factors that occur simultaneously, not the least of which are own ship’s speed and course, distance to a target, bearing, the target’s speed and course if not stationary, initial shell velocity, and wind speed and direction.

The mechanisms are introduced with a rack and pinion demonstration in two dimensions. Principally speaking, a shaft carries a value based on revolutions. From this, a system can be geared at different ratios.

Cams take this idea further, transferring a regular motion such as rotation to an irregular motion. They do so using a working surface as input and a follower as output. We are shown how cams change rotary motion to linear motion. While the simplest example is limited to a single revolution, additional revolutions can be obtained by extending the working surface. This is usually done with a ball in a groove.

Continue reading “Retrotechtacular: Fire Control Computers in Navy Ships”