Heavy Lifting Copters Can Apparently Lift People

Online RC store Hobby King is once again encouraging people to push the limits of what quadcopters and other multirotor remote control vehicles can do. They call it the beerlift and the goal is simple: build a multirotor craft capable of carrying the greatest amount of beer (or water, everything is measured by weight).

The competition is over, but the results were spectacular. The vehicle with the largest lift capacity – pictured above – was built by [Olaf Frommann] and carried 58.7 kilograms, or nearly 128 pounds to a hover a few feet off the ground. Last year the biggest lift was a mere 47 kg with an eight-rotor craft.

It was still an impressive showing all around. The biggest lift in the 700 class – 700 mm from rotor to rotor – was done by [David Ditch] with 19.6 kg. You can check out some of the best entries below, including an amazing aerobatic quadcopter that can successfully loop carrying a cup of beer,

Continue reading “Heavy Lifting Copters Can Apparently Lift People”

Students Build A 3D Printed Plane

3d printed plane

A student team has successfully designed, built, and flown a 3D printed RC plane using only $16 of plastic with a consumer-grade 3D printer (Makerbot), plus the necessary electronics and motor.

The folks over at the Wright Brothers Institute (WBI) have a great program called the AFRL Discovery Lab which brings teams of students, businesses, researchers, and government together to work on a specific challenge or opportunity.

One of the programs this year was the Disposable Miniature Air Vehicle, or DMAV for short. The student interns [Nathan, Ben, and Brian] spent the first 5 weeks at Tec^Edge designing the plane. The team went through 5 revisions before they settled on a design they believed could fly. The final plane weighed 1.5 pounds, and on its first flight… plummeted into the ground. Good thing they printed a second copy! After some more practice [Stephen] got the hang of it and was able to fly and land the plane successfully.

According to the WBI, this is the first functional aircraft that has been fully 3D printed (sans electronics) using FDM technology, and the first low wing 3D printed plane to be flown. Hate to burst their bubble, but 3D printed quadcopters have been around for quite a while!

Test flight video is after the break.

Continue reading “Students Build A 3D Printed Plane”

Retrotechtacular: The Apollo Guidance Computer

There is so much amazing technology that came out of the space race. For this week’s Retrotechtacular we’re looking at the guidance computer used in the Apollo program undertaken by NASA in the 1960’s.

One of the main components of this system is the Inertial Measurement Unit or IMU. That’s a familiar term for hackers who build quadcopters or other devices for which spacial awareness is paramount. In this case the IMU provided critical information about the motion and orientation of the capsule during it’s trip from the Earth to the Moon and back. But it wasn’t just high tech electronics along for the flight. To determine actual position a sextant was used for triangulating position. Yes, this is the same type of measuring device used for centuries. The method of using the sextant is displayed above. The spacecraft was turned until the sextant pointed at a landmark on Earth. The instrument was the adjusted to line up a star as a landmark, then the computer calculated position based on time and the angles of the two points being sighted. There’s a lot more shown in this thirty-minute film including in-depth assembly and testing of the computer components.

Before we point you to a few related articles we’d like to mention that our stash of really cool Retrotechtacular tips is running low. So if you know of some old footage that’s awesome to watch please send us a tip about it.

Now if you can’t get enough about NASA electronics you should check out the LVDC board which [Fran] got her hands on. Also, it’s worth checking out the unbelievable soldering techniques specified in the NASA manual. There’s a pretty good discussion about that going on in the Reddit thread.

Continue reading “Retrotechtacular: The Apollo Guidance Computer”

Finally, A Practical Use For The Leap

Robots used in laparoscopic surgery are fairly commonplace, but controlling them is far from simple. The usual setup is something akin to a Waldo-style manipulator, allowing a surgeon to cut, cauterise, and stitch from across a room. There is another way to go about this thanks to some new hardware, as [Sriranjan] shows us with his Leap-controlled surgery bot.

[Sriranjan] isn’t using a real laparoscopic surgery robot for his experiments. Instead, he’s using the Le-Sur simulator that puts two virtual robot arms in front of a surgeon in training. Each of these robotic arms have seven degrees of freedom, and by using two Leap controllers (one each in a VM), [Sriranjan] was able to control both of them using his hands.

We’ve seen a lot of creative applications for the Leap sensor, like controlling quadcopters, controlling hexapod robots, and controlling more quadcopters, but this is the first time we’ve seen the Leap do something no other controller can – emulating the delicate touch of a surgeon’s hand

Continue reading “Finally, A Practical Use For The Leap”

Kebab Skewer Quadcopter

kebab-skewer-quadcopter

Quadcopters are the epitome of high-tech hobby electronics. We’re quite used to seeing the frames built out of modern materials (carbon fiber, 3d printed, etc). But it’s pretty hard to beat the strength-to-weight ratio of kebab skewers. You heard us correctly. [Shiny Shez] built his quadcopter frame from kebab skewers.

You might want to get that Boy Scout Handbook out and brush up on your lashing skills. Lashing is a method of using rope (string in this case) to fasten together wooden sticks (bamboo kebab skewers). Once the lashed joints are precisely oriented [Shiny] applies a liberal coat of super glue to cement them in place.

He went the easy route when it comes to control hardware. You can get spare parts for the Husban X4, a commercially available quadcopter. Its main controller is used here. The single board controls the motors, monitors an IMU to keep the aircraft stable while in flight, and includes a wireless transceiver. On the receiving side [Shiny] uses an Arduino with a wireless module. This way he can control the quadcopter from his laptop, or go one step further and use an Android phone.

Solar Powered Hovercraft

SONY DSC

It looks a little bit like an octocopter, but this solar-powered hovercraft is distinctly different from its free-flying brethren. It depends mostly on ground effect for operation and to get it just a bit into the air you need a pretty large reflective rig nearby.

The vehicle needs to be even lighter than traditional quadcopters in order to function. It doesn’t carry any battery at all which presents a problem when trying to program the microcontroller board. For this it is connected to an external battery, which is removed before flight so that the control can be powered from the solar array.

What’s not shown in the image above is a mirror array used to focus more intense sunlight on the panels to bump up the available electricity. Not much is said about this, but there is one image on the project page which shows the creator standing in front of the set of four mirrors (perhaps sheets of mylar?) strung up between a couple of trees.

Alas, we couldn’t find a video of the aircraft in action. With such a delicate balsa wood frame we’re sure this thing is affected by every air current that passes its way.

[Thanks Laimonas]

GoPro Hack Delivers Live Video Feed For Piloting Your Quadcopter

The GoPro line of HD cameras seem like they were specifically designed for use with quadcopters. We say that because the small, light-weight video devices present a payload which can be lifted without too much strain, but still have enough horse power to capture video of superb quality. Here’s a hack that uses the camera to provide a remote First Person View so that you may pilot the aircraft when it is out of your line of sight.

The camera in question is a GoPro Hero 3. It differs from its predecessors in that the composite video out port has been moved to a mini USB connector. But it’s still there and just a bit of cable splicing will yield a very clear signal. The image above shows the camera in the middle, connecting via the spliced cable to an FPV transmitter on the right. This will all be strapped to the quadcopter, with the signal picked up by the receiver on the left and piped to a goggle display worn by the pilot. You can see the cable being construction process in the clip after the break.

If you’re looking for other cool stuff to do with your GoPro camera check out the bullet-time work [Caleb] did with ours.

Continue reading “GoPro Hack Delivers Live Video Feed For Piloting Your Quadcopter”