British Trains To (Maybe) Make Way For Steam Once More

There’s nothing more guaranteed to excite a grizzled old railway enthusiast than the sight of a steam locomotive. The original main-line rail propulsion technology still clings on in a few places, but for practical purposes, it disappeared a lifetime ago. It’s interesting then to hear of a brand new steam locomotive prototype being considered for revenue freight use on British metals. Is it yet another rebuild of a heritage design to be used for enthusiasts only? No, it’s an entirely new design with nothing in common with the locomotives of the past, as [Terrier55Stepney] tells us in the video below the break.

Gone is the huge boiler and reciprocating pistons of old, as indeed is the notion of boiling anything. Instead, this is a steam turbine, nothing like the 1920s and 30s experiments with conventional locomotives, nor even the Union Pacific’s oil-fired condensing turbo-electrics. The new idea here from the British company Steamology is to create steam directly from the combustion of hydrogen in a series of small modular steam generators, and the resulting prototype turbo-generator will replace the diesel engine in a redundant British Rail class 60 freight locomotive. It’s unclear whether it will incorporate a condenser, but since it has no need to retain the water for a boiler we’re not sure it would need one.

Prototype locomotives featuring new technologies have a long and inglorious history of not making the grade, so while this is definitely an exciting and interesting development we’re not guaranteed to see it in widespread use. But it could offer a way to ensure a low-carbon replacement for diesel heavy freight locomotives, and unexpectedly provide engine upgrades for existing classes. The fact it’s technically a steam locomotive is incidental.

Continue reading “British Trains To (Maybe) Make Way For Steam Once More”

Full-Scale Flying DeLorean Gets Closer To Liftoff

These days, even hobbyist multi-rotor aircraft are capable of carrying considerable payloads. For example, the test rig that [Brian Brocken] recently put together should be able to loft more than 80 pounds (36 kilograms) without breaking a sweat. That would be a whole lot of camera gear or other equipment, but in this case, he’s planning on carrying something a bit more interesting: a full-scale foam DeLorean.

We first covered this project in December of last year, when [Brian] started using a massive robotic arm to carefully cut the body and individual parts of the car out of expanded polystyrene foam. He estimated at the time the body should weigh in at less than 30 lbs (14 kg), so he’d need to build a quadcopter with a maximum lift of roughly twice that much to keep the performance where he wanted it.

Continue reading “Full-Scale Flying DeLorean Gets Closer To Liftoff”

A battery-testing business card.

2024 Business Card Challenge: A Battery Tester With Blinkenlights

Readers of a certain vintage will no doubt remember that for a brief time, some alkaline batteries came with a built-in battery tester. Basically, you just pushed really hard with your fingernails on the two ends of the strip, and it either lit up the little strip (or didn’t if it was dead), or made the word ‘good’ appear if energized.

But those days are long gone. What you need now is to either grab the voltmeter, stick out your tongue, or build yourself a battery-testing business card. Even the normies will enjoy this one, mostly because LEDs. Forty-seven of them to be exact, which will come to life and demonstrate that [Greg] is capable of making working electronic gadgets. No way does this card end up at the bottom of a desk drawer.

As far as grasping the batteries goes, [Greg] had several ideas, but ultimately landed on pogo pins, which we think is a fabulous solution. Be sure to check out the neat interactive BOM, somewhere in the middle of which is the CH32v003 RISC-V microcontroller. In the video after the break, you can see [Greg] using a Flipper Zero to program it.

Continue reading “2024 Business Card Challenge: A Battery Tester With Blinkenlights”

Arduino PLC Keeps The Beat

For most of our prototype, hobby, or one-off electronics projects it’s perfectly fine to use a development platform like an Arduino Uno or something to that effect. They’re both easy to program and easy to wire up to projects without breaking the bank. But if you step into an industrial setting where reliability is paramount even in places that are noisy, vibrating all the time, hot, or otherwise unpleasant for electronics, you’ll want to reach for a programmable logic controller (PLC) that are much more robust. There is actually a PLC from Arduino, and if you want to dip your toes into the PLC world then take a look at this drum kit based on the Arduino Opta.

With the PLC at the core of the build, it’s on to making the drumming mechanisms themselves. For that, project creator [JC Audio] is using a series of solenoids attached to camera mounts with a custom 3D printed part that allows for quick assembly and disassembly so he can get the positioning of each drum sound just right. The high hat is taken care of by the noise of an internal solenoid, with the other drums striking various real drums and other solid objects in his shops. The solenoids themselves are driven by a solid-state relay expansion module to ensure there’s enough power

While the build doesn’t sit inside a factory and run for years at a time, a musician’s stage is certainly a rough enough environment that we might reach for a PLC over a standard development board for its benefits. The code for this project is available as well at the project’s GitHub page for those looking for a more advanced timekeeper to play along with their music practice, and for more details on why you might choose a PLC for your project take a look at this Arduino vs PLC showdown from a few years ago.

Continue reading “Arduino PLC Keeps The Beat”

Halfway Between Inspiration And Engineering

We see a lot of hacks where the path to success is pretty obvious, if maybe strewn with all sorts of complications, land-mines, and time-sinks. Then we get other hacks that are just totally out-of-the-box. Maybe the work itself isn’t so impressive, or even “correct” by engineering standards, but the inner idea that’s so crazy it just might work shines through.

This week, for instance, we saw an adaptive backlight LED TV modification that no engineer would ever design. Whether it was just the easiest way out, or used up parts on hand, [Mousa] cracked the problem of assigning brightnesses to the LED backlights by taking a tiny screen, playing the same movie on it, pointing it at an array of light sensors, and driving the LEDs inside his big TV off of that. No image processing, no computation, just light hitting LDRs. It’s mad, and it involves many, many wires, but it gets the job done.

Similarly, we saw an answer to the wet-3D-filament problem that’s as simple as it could possibly be: basically a tube with heated, dry air running through it that the filament must pass through on it’s way to the hot end. We’ve seen plenty of engineered solutions to damp filament, ranging from an ounce of prevention in the form of various desiccant storage options, to a pound of cure – putting the spools in the oven to bake out. We’re sure that drying filament inline isn’t the right way to do it, but we’re glad to see it work. The idea is there when you need it.

Not that there’s anything wrong with the engineering mindset. Quite the contrary: most often taking things one reasonable step at a time, quantifying up all the unknowns, and thinking through the path of least resistance gets you to the finish line of your project faster. But we still have to admire the off-the-wall hacks, where the way that makes the most sense isn’t always the most beautiful way to go. It’s a good week on Hackaday when we get both types of projects in even doses.

Candle Powered Lantern Isn’t As Silly As You Think

[Gilles Messier] at the Our Own Devices YouTube channel recently took a look at an interesting device — an electric lantern powered by a candle. At first glance, this sounds completely absurd. Why use a candle to power LEDs when you can use the light from the candle itself? This gadget has a trick up its sleeve, though. It lets candle light out and uses the heat from the candle flame to generate power for the LEDs.

The small Peltier “solid-state heat pump” module in the lantern acts as a thermoelectric generator, converting heat from the candle into electricity for the LEDs. The genius of the device is how it handles the candle “exhaust”.  A bimetallic disk in the chimney of the lantern closes when the air inside the device is hot. The Peltier device converts the heat differential to electricity, causing the air inside the lantern to cool. Meanwhile, the candle is beginning to starve for oxygen.  Once the air cools down a bit, the disk bends, allowing stale smoke out, and fresh air in, allowing the candle to burn brightly again. Then the cycle repeats.

[Gilles] does a deep dive into the efficiency of the lantern, which is worth the price of admission alone. These lanterns are pretty expensive — but Peltier modules are well-known by hackers. We’re sure it won’t be too hard to knock together a cheap version at home.

Continue reading “Candle Powered Lantern Isn’t As Silly As You Think”

New Solar Spheres Claim To Be Better Than Solar Panels

When you think of solar energy, you probably think of flat plates on rooftops. A company called WAVJA wants you to think of spheres. The little spheres, ranging from one to four inches across, can convert light into electricity, and the company claims they have 7.5 times the output of traditional solar panels and could later produce even more. Unfortunately, the video below doesn’t have a great deal of detail to back up the claims.

Some scenes in the video are clearly forward-looking. However, the so-called photon energy system appears to be powering a variety of real devices. It’s difficult to assess some of the claims. For example, the video claims 60 times the output of a similar-sized panel. But you’d hardly expect much from a tiny 4-inch solar panel.

Continue reading “New Solar Spheres Claim To Be Better Than Solar Panels”