BeagleBones At MRRF

[Jason Kridner] – the BeagleBone guy – headed out to the Midwest RepRap Festival this weekend. There are a lot of single board computers out there, but the BeagleBoard and Bone are perfectly suited for controlling printers, and motion control systems thanks to the real-time PRUs on board. It’s not the board for you if you want to play retro video games or build a media center; it’s the board for building stuff.

Of interest at the BeagleBooth were a few capes specifically designed for CNC and 3D printing work. There was the CRAMPS, a clone of the very popular RAMPS 3D printer electronics board made for the Beagle. If you’re trying to control an old mill that is only controllable through a parallel port, here’s the board for you. There are 3D printer boards with absurd layouts that work well as both printer controller boards and the reason why you should never come up with the name of something before you build it.

[Jason]’s trip out to MRRF wasn’t only about extolling the virtues of PRUs; Machinekit, a great motion control software, was also there, running on a few Beagles. The printer at the BeagleBooth was running Machinekit and apart from a few lines of GCode that sent the head crashing into the part, everything was working great.

Continue reading “BeagleBones At MRRF”

MRRF: (not Quite) Chocolate Clock

[Jason] is a woodworker. At least, he was until he saw his first 3D printer. While he may still work in wood, he particularly likes adapting scroll saw patterns for 3D printing. His clock started as a woodworking pattern for use on a scroll saw. To adapt it for 3D printing, [Jason] scanned the plotter-sized pattern pieces into Inkscape, where he was able to do things like add bevels before sending the pieces to OpenSCAD.

tall chococlockAs you might imagine, a great deal of work went into this build, beginning with the scanning. [Jason] starting scanning last October and finished in January. Printing started January 9th, and he told me the final pieces were printed early this morning. We know you want all the details, so here goes: this build took just over six rolls of PLA at 20% infill. It’s 48″ tall and about 24″ wide. It was printed on what [Jason] referred to as his “very modified” Replicator 2. He glued the pieces together with Testor’s, and that took about 30 hours. All through the project, he kept meticulous notes in a spreadsheet of print times and filament used.

We were honored to be among the first to see [Jason]’s incredible clock build at this year’s Midwest RepRap Festival. He would like to take it on tour this year to the nearby Maker Faires. If he can figure out how transport it safely, he’d like to show it at World Maker Faire in NYC.

MRRF: Roundtable And Roundup

Last weekend Hackaday made a trip out to the Midwest RepRap Festival in Goshen, Indiana. We met a ton of interesting people, saw a lot of cool stuff, and managed to avoid the Amish horse and buggies plying the roads around Goshen.

We’ve already posted a few things from MRRF, including [Jordan Miller] and co.’s adventures in bioprinting, a very cool printable object repo that’s backed by a nonprofit LLC, some stuff from Lulzbot that included a new extruder, stretchy filament, and news of a 3D scanner that’s in development, ARM-based CNC controllers including the Smoothieboard and capes for the Beaglebone, 3D printed resin molds, the newest project from [Nicholas Seward], creator or the RepRap Wally, Simpson, and Lisa, and 3D printed waffles. It really was an amazing event and also the largest DIY 3D printer convention on the planet. How this happened in Goshen, Indiana is anyone’s guess, but we’d like to give a shout out to SeeMeCNC for organizing this event.

With so many famous RepRappers in one place, it only made sense to put together a round table discussion on the state of RepRap, 3D printers, and microfabrication. We have a 40-minute long video of that, which you can check out after the break.

Continue reading “MRRF: Roundtable And Roundup”

MRRF: 3D Bioprinting

 

There were a few keynotes at this year’s Midwest RepRap festival, and somewhat surprisingly most of the talks weren’t given by the people responsible for designing your favorite printer. One of the most interesting talks was given by [Jordan Miller], [Andy Ta], and [Steve Kelly] about the use of RepRap and other 3D printing technologies in biotechnology and tissue engineering. Yep, in 50 years when you need a vital organ printed, this is where it’ll come from.

[Jordan] got his start with tissue engineering and 3D printing with his work in printing three-dimensional sugar lattices that could be embedded in a culture medium and then dissolved. The holes left over from the sugar became the vasculature and capillaries that feed a cell culture. The astonishing success of his project and the maker culture prompted him and others to start the Advanced Manufacturing Research Institute to bring young makers into the scientific community. It’s a program hosted by Rice University and has seen an amazing amount of success in both research and getting makers into scientific pursuits.

One of these young makers is [Andy Ta]. An economics major, [Andy] first heard of the maker and RepRap community a few years ago and bought a MakerBot Cupcake. This was a terrible printer, but it did get him involved in the community, hosting build workshops, and looking into 3D printing build around DLP-cured UV resin. At AMRI, [Andy] started looking at the properties of UV-cured resin, figuring out the right type of light, resin, and exposure to create a cured resin with the right properties for printing cell colonies. You can check out [Andy]’s latest work on his webzone.

[Steve Kelly] has also done some work at AMRI, but instead of the usual RepRap or DLP projector-based printers, he did work with shooting cell cultures out of an ink jet print head. His initial experiments involved simply refilling an ink jet cartridge with a bacterial colony and discovering the cells actually survived the process of being heated and shot out of a nozzle at high speed. Most ink jets printers don’t actually lay out different colors on a precise grid, making it unusable for growing cell cultures. [Steve] solved this problem with an inkjet controller shield attached to a RepRap. All of [Steve]’s work is documented on his Github.

It’s all awesome work, and the beginnings of both bioengineering based on 3D printers, and an amazing example of what amateur scientists and professional makers can do when they put their heads together. Video link below.

Continue reading “MRRF: 3D Bioprinting”

MRRF: Repables, The Nonprofit 3D Object Repository

Repables

There’s a problem with online repositories of 3D printable objects: The largest repo, Thingiverse, is generally looked down upon by the 3D printing community. Thingiverse, owned by Makerbot, has seen protests, and calls for a an alternative repository. A few people have stepped up to provide a better Thingiverse, but these alternatives are either connected to specific 3D printer manufacturers like Ultimaker’s YouMagine, or have done some shady things with open source licenses; Defense Distributed’s DEFCAD, for example.

Repables, launched at the Midwest RepRap Festival this last weekend, hopes to change that. They are the only repository of printable objects and design files out there that’s backed by its own nonprofit LLC. It’s free for anyone to upload their parts and share, without the baggage that comes with an ‘official [company name] .STL repo’.

Just about everything can be hosted on Repables – .STL files for printable objects, .DXF files for laser cutter files, and even PCB files and Gerbers for circuit boards. Now, .STL files are able to be rendered in the browser, with support for viewing other formats coming soon.

It’s a really great idea that solves the problem of printer manufactures building their own hosting sites and the segmentation that ensues. It’s also headed up by a Hackaday alumnus, []. We’re everywhere, it seems.

MRRF: Stuff From Lulzbot

A lot of the big names in 3D printers were at the Midwest RepRap festival showing off their wares, and one of the biggest was Lulzbot with their fabulous Taz 3 printer. This year, they were showing off a new filament, a new extruder, and tipping us off to a very cool project they’re working on.

The new products Lulzbot is carrying are Ninjaflex filament and the extruder to go with it. Ninjaflex is the stretchiest filament we’ve ever seen, with the feel of a slightly hard silicone rubber. Straight off the spool, the filament will stretch to a little less than twice its original length, and in solid, printed form its a hard yet squishy material that would be perfect for remote control tank treads, toys, and 3D printed resin molds. With all the abuse the sample parts received over the weekend, we’re going to call Ninjaflex effectively indestructible, so long as you don’t try to pull the layers apart.

Also from Lulzbot is word on the new 3D scanner they’re working on. The hardware isn’t finalized yet, but the future device will use a webcam, laser, and turntable to scan an object and turn it directly into an .STL file. Yes, that means there won’t be any point clouds or messing about with Meshlab. Lulzperson [Aeva] is working on the software that subtracts an object from its background and turns it into voxels. The scanner will be low-cost and open source, meaning no matter what the volume of the scanner will be, someone will eventually build a person-sized 3D scanner with the same software.

Videos of [Aeva] below showing off the new stuff and talking about the scanner.

Continue reading “MRRF: Stuff From Lulzbot”

MRRF: ARM-Based CNC Controllers

 

8-bit microcontrollers are the standard for RepRap electronics, but eventually something better must come along. There has been a great deal of progress with ARM-based solutions, and of course a few of these made a showing at the Midwest RepRap Festival.

First up is [Mark Cooper], creator of Smoothieboard, the ultimate RepRap and CNC controller. It’s an ARM Cortex-M3 microcontroller with Ethernet, SD card, and up to five stepper drivers. It had a Kickstarter late last year and has just finished shipping all the rewards to the backers. In our video interview, [Mark] goes over the functions of Smoothieboard and tells us about some upcoming projects: the upcoming Smoothiepanel will feature a graphic LCD, SD card, rotary encoder and buttons, all controlled over USB by the Smoothieboard.

Next up is [Charles] with a whole bunch of CNC capes for the Beaglebone. By far the most impressive board was a huge I/O expander, motor driver, and everything controller for a Beaglebone featuring – get this – three parallel port interfaces. This was a one-off board costing thousands of dollars, but [Charles] did show off a few smaller and more practical boards for Beaglebone CNC control. Here’s a link to [Charles]’ capes.

Videos below.

Continue reading “MRRF: ARM-Based CNC Controllers”