Intel Makes A Cool Robot Brain In Latest Attempt to Pry Hackers From Their Wallets

Hackerboards got a chance to sit down with Intel’s latest attempt to turn hackers into a willing and steady revenue stream, the, “Euclid.” The board is cool in concept, a full mini computer with stereo cameras, battery, Ubuntu, and ROS nicely packaged together.

We would be more excited if we knew how much it costs, but in principle the device is super cool. From a robotics research perspective it’s a sort of perfect package. ROS is a wonderful distributed and asynchronous robotic operating system, test, and development platform. The Intel developers designed this unit around the needs of ROS and it comes pre-installed on the camera.

For those who haven’t used ROS before, this is a really cool feature. ROS is natively distributed. It really doesn’t care where the computer supplying its data lives. So, for example, if you already had a robot and wanted to add stereo vision to it. You could offload all the vision processing components of your existing ROS codebase to the Euclid and continue as if nothing changed.

The other option is to use the board as the entire robot brain. It’s self contained with battery and camera. It’s a USB to serial connection away from supercharging any small robotics project.

Unfortunately the board is still a demo, and based on Intel’s history, likely to be too expensive to lure ordinary hackers away from the RasPis and import cameras they already know how to hack together into more or less the same thing. Universities will likely be weak at the knees for such a development though.

The Mystery Behind the Globs of Epoxy

When Sparkfun visited the factory that makes their multimeters and photographed a mysterious industrial process.

We all know that the little black globs on electronics has a semiconductor of some sort hiding beneath, but the process is one that’s not really explored much in the home shop.  The basic story being that, for various reasons , there is no cheaper way to get a chip on a board than to use the aptly named chip-on-board or COB process. Without the expense of encapsulating  the raw chunk of etched and plated silicon, the semiconductor retailer can sell the chip for pennies. It’s also a great way to accept delivery of custom silicon or place a grouping of chips closely together while maintaining a cheap, reliable, and low-profile package.

As SparkFun reveals, the story begins with a tray of silicon wafers. A person epoxies the wafer with some conductive glue to its place on the board. Surprisingly, alignment isn’t critical. The epoxy dries and then the circuit board is taken to a, “semi-automatic thermosonic wire bonding machine,” and slotted into a fixture at its base. The awesomely named machine needs the operator to find the center of the first two pads to be bonded with wire. Using this information it quickly bonds the pads on the silicon wafer to the  board — a process you’ll find satisfying in the clip below.

The final step is to place the familiar black blob of epoxy over the assembly and bake the board at the temperature the recipe in the datasheet demands. It’s a common manufacturing process that saves more money than coloring a multimeter anything other than yellow.

Continue reading “The Mystery Behind the Globs of Epoxy”

Hands-On the Shaper Origin: A Tool That Changes How We Build

I bet the hand saw really changed some things. One day you’re hacking away at a log with an ax. It’s sweaty, awful work, and the results are never what you’d expect. The next day the clever new apprentice down at the blacksmith’s shop is demoing his beta of his new Saw invention and looking for testers, investors, and a girlfriend. From that day onward the work is never the same again. It’s not an incremental change, it’s a change. Pure and simple.

This is one of those moments. The world of tools is seeing a new change, and I think this is the first of many tools that will change the way we build.

Like most things that are a big change, the components to build them have been around for a while. In fact, most of the time, the actual object in question has existed in some form or another for years. Like a crack in a dam, eventually someone comes up with the variation on the idea that is just right. That actually does what everything else has been promising to do. It’s not new, but it’s the difference between crude and gasoline.

My poetic rasping aside, the Shaper Origin is the future of making things. It’s tempting to boil it down and say that it’s a CNC machine, or a router. It’s just, more than that. It makes us more. Suddenly complex cuts on any flat surface are easy. Really easy. There’s no endless hours with the bandsaw and sander. There’s no need for a 25,000 dollar gantry router to take up half a garage. No need for layout tools. No need to stress about alignment. There’s not even a real need to jump between the tool and a computer. It can be both the design tool and the production tool. It’s like a magic pencil that summons whatever it draws. But even I had to see it to believe it.

Continue reading “Hands-On the Shaper Origin: A Tool That Changes How We Build”

One Man, A Raspberry Pi, and a Formerly Hand Powered Loom

[Fred Hoefler] was challenged to finally do something with that Raspberry Pi he wouldn’t keep quiet about. So he built a machine assist loom for the hand weaver. Many older weavers simply can’t enjoy their art anymore due to the physical strain caused by the repetitive task. Since he had a Pi looking for a purpose, he also had his project.

His biggest requirement was cost. There are lots of assistive looms on the market, but the starting price for those is around ten thousand dollars. So he set the rule that nothing on the device would cost more than the mentioned single board computer. This resulted in a BOM cost for the conversion that came in well under two hundred dollars. Not bad!

The motive parts are simple cheap 12V geared motors off Amazon. He powered them using his own motor driver circuits. They get their commands from the Pi, running Python. To control the loom one can either type in commands into the shell or use the keyboard. There are also some manual switches on the loom itself.

In the end [Fred] met his design goal, and has further convinced his friends that the words Raspberry Pi are somehow involved with trouble.

Continue reading “One Man, A Raspberry Pi, and a Formerly Hand Powered Loom”

Add Robotic Farming to Your Backyard with Farmbot Genesis

Growing your own food is a fun hobby and generally as rewarding as people say it is. However, it does have its quirks and it definitely equires quite the time input. That’s why it was so satisfying to watch Farmbot push a weed underground. Take that!

Farmbot is a project that has been going on for a few years now, it was a semifinalist in the Hackaday Prize 2014, and that development time shows in the project documented on their website. The robot can plant, water, analyze, and weed a garden filled with arbitrarily chosen plant life. It’s low power and low maintenance. On top of that, every single bit is documented on their website. It’s really well done and thorough. They are gearing up to sell kits, but if you want it now; just do it yourself.

The bot itself is exactly what you’d expect if you were to pick out the cheapest most accessible way to build a robot: aluminum extrusions, plate metal, and 3D printer parts make up the frame. The brain is a Raspberry Pi hooked to its regular companion, an Arduino. On top of all this is a fairly comprehensive software stack.

The user can lay out the garden graphically. They can get as macro or micro as they’d like about the routines the robot uses. The robot will happily come to life in intervals and manage a garden. They hope that by selling kits they’ll interest a whole slew of hackers who can contribute back to the problem of small scale robotic farming.

Struggling Robot Made With DIY Soft Limbs

[Jonathan Grizou] is experimenting with robot designs, and recently stumbled upon a neat method for making soft robots. While his first prototype, a starfish like robot, doesn’t exactly “whelm” a person with it’s grace and agility, it proves the concept. Video after the break.

In this robot the frame is soft and the motor provides most of the rigidity for the structure. The soft parts of the frame have hardpoints embedded into them for mounting the motors or joining sections together. The sections are made with 3D printed molds. The molds hold the 3D printed hard points in place. Silicone is poured into the mold and left to cure overnight. The part is then demolded and is ready for use.

Continue reading “Struggling Robot Made With DIY Soft Limbs”

A Tech That Didn’t Make It: Sound On Stainless Steel Wire

For a brief period in the 1940’s it might have been possible for a young enamored soul to hand his hopeful a romantic mix-spool of wire. This was right before the magnetic tape recorder and its derivatives came into full swing and dominated the industry thoroughly until the advent of the compact disk and under a hundred kilogram hard disk drives. [Techmoan] tells us all about it in this video.

The device works as one would expect, but it still sounds a little crazy. Take a ridiculously long spool of steel wire the size of a human hair(a 1 hour spool was 2.2km of wire), wind that through a recording head at high speed, magnetize the wire, and spool it onto a receiving spool.

If you’re really lucky the wire won’t dramatically break causing an irreversible tangle of wire. At that point you can reverse the process and hear the recorded sound. As [Techmoan] shows, the sound can best be described as… almost okay. Considering that its chief competition at the time was sound carved into expensive aluminum acetate plates, this wasn’t the worst.

The wire recorder lived on for a few more years in niche applications such as airplane black boxes. It finally died, but it does sound like a really fun couple-of-weekends project to try and build one. Make sure and take good pictures and send it in if any of you do.

Continue reading “A Tech That Didn’t Make It: Sound On Stainless Steel Wire”