3D Printed Strandbeests Made To Order

strandbeest

If you love Strandbeests but don’t have the patience to build your own, Dutch artist [Theo Jansen] has you covered. You might remember him from a story we ran last year, detailing his awesome beach-going strandbeest creations.

His beach walkers are typically built out of PVC conduit and plastic tubing, towering over their creator. For the time being however, he is focusing his work on a much smaller scale. [Theo] has recently teamed up with a 3D printing shop in order to offer miniature working replicas of his creations to the public. The current models can be had for $105, which seems like a pretty steep price to us. Then again, these models come fully assembled and are composed of 76 individual pieces, which is nothing to sneeze at.

That said, considering how easily a Strandbeest can be created with a stack of thick paper and some free time, we imagine that an enterprising individual could build one using readily available plastics at a fraction of the cost. Anyone out there up for giving it a shot?

Continue reading to see a video of the Strandbeest creation process.

[via Gizmodo]

Continue reading “3D Printed Strandbeests Made To Order”

Dodecapod To Offset Segway As Futuristic Transport

Who doesn’t love a 12-legged robot, especially if you can ride it around work? You can watch this one running around the patio with rider perched atop it. The machine translation is a bit crude, but it seem this is based on the wicked walking sculptures of [Theo Jansen]. The rider can shift their center of gravity to control the walker, much like a Segway. We’d bet this makes for a rough ride on anything but a smooth level surface, but we’re fine with indoor use only. After all, you’ll need to be close to a charging station as this boasts 45 minutes of juice when transporting a 165 pound operator. See it scurry after the break.

Continue reading “Dodecapod To Offset Segway As Futuristic Transport”

a kinetic bar framework mounted on a wooden base made of 3d printed bars of alternative black and grey color, each joined with m3 bolts and nuts

Kinetic Cyclic Scissors

[Henry Segerman] and [Kyle VanDeventer] merge math and mechanics to create a kinetic cyclic scissors sculpture out of 3D printed bars adjoined together with M3 bolts and nuts.

a kinetic bar framework with 3d printed bars of alternative black and grey color, each joined with m3 bolts and nuts being held by a person at two points with a quadrilateral tiling overlay

The kinetic sculpture can be thought of as a part of an infinite tiling of self similar quadrilaterals in the plane. The tiling of the plane by these self similar quadrilaterals can be realized as a framework by joining the diagonal points of each quadrilateral with bars. The basic question [Henry] and [Kyle] wanted to answer was under what conditions can the realized bar framework of a subsection of the tiling be made to move. Surprisingly, when the quadrilateral is a parallelogram, like in a scissor lift, or “cyclic”, when the endpoints lie on a circle, the bar framework can move. Tweaking the ratios of the middle lengths in a cyclic configuration leads to different types of rotational symmetry that can be achieved as the structure folds in on itself.

[Henry] and [Kyle] go into more detail in their Bridges Conference paper, with derivations and further discussions about the symmetry induced by adjusting the constraints. The details are light on the actual kinetic sculpture featured in the video but the bar framework was chosen to have a mirror type of symmetry with a motor attached to one of the central, lower bars to drive the movement of the sculpture.

The bar framework is available for download for anyone wanting to 3D print or laser cut their own. Bar frameworks are useful ideas and we’ve seen them used in art sculptures to strandbeests, so it’s great to see further explorations in this space.

Video after the break!

Continue reading “Kinetic Cyclic Scissors”

Omnidirectional Walker With Wheeled Feet

[James Bruton] is on a quest to explore all the weird and wonderful methods of robot locomotion, and in his latest project created an omnidirectional walker that can move in any direction instantaneously.

The walker actually makes use of three independent four-legged Strider mechanisms, connected in a triangle at 120deg. Wheels are attached to the bottom of each leg, oriented at a right angle to the leg’s plane of motion to allow the foot to slide. Varying the relative speed and direction of each of the mechanisms lets the robot move in any direction, similar to his ball-wheeled robot. Each strider mechanism uses a single motor and looks similar to Strandbeest walkers, but it lifts its feet to traverse rougher terrain. [James] demonstrates this with some obstacles, and found that moving in such an orientation that all three sets of legs provide the best results.

[James] planes to build a larger rideable version, but we think he should mount a chest of Sapient Pearwood to carry all his stuff and name it The Luggage.

Continue reading “Omnidirectional Walker With Wheeled Feet”

Coin-Operated Graphing Calculator Console

Longtime hacker [Peter Jansen] was so impressed with a piece in The Onion from last year that he decided to build this coin-operated Texas Instruments graphing calculator console on a whim (video below the break — warning vertical orientation).

With nothing more to go on than the fake mock-up pictured from the original satirical article, [Peter] was able to scale the dimensions from the photo making a few reasonable assumptions. He built the project over the holidays, enlisting his father and daughter as helpers. The cabinet is framed in 2×3 lumber and faced with wood veneer covered plywood and vinyl overlays for the graphics.

The computing power is from a Raspberry Pi with an Arduino Uno serves as an I/O processor. It was a bit tricky to control a calculator with only two knobs, but he makes it work. However, at 25 cents per plot with no apparent hard-copy capability, this console calculator might be a bit pricey for all but casual plotting over a few beers at the local pub.

You might remember [Peter] from some of his hacks we featured over the years, like his home-brew CT scanner or placing fourth in the first Hackaday Prize contest in 2014 with the open sourced tricorder project.

 

Continue reading “Coin-Operated Graphing Calculator Console”

Tiny ESP32 Strider Walks The Walk

Wheels might be the simplest method of locomotion for robots, but walkers are infinitely more satisfying to watch. This is certainly the case for [Chen Liang’s] tiny Strider walker controlled by a ESP32 camera board.

The Strider mechanism might look similar to Strandbeest walkers, but it lifts its feet higher, allowing it to traverse rougher terrain. [Chen]’s little 3D printed version is driven by a pair of geared N20 motors, with three legs on each side. The ESP32 camera board allows for control and an FPV video feed using WiFi, with power coming from a 14500 LiFePO4 battery. The width required by the motors, leg mechanisms, and bearings means the robot is quite wide, to the point that it could get stuck on something that’s outside the camera’s field of view. [Chen] is working to make it narrower by using continuous rotation servos and a wire drive shaft.

We’ve seen no shortage or riffs on the many-legged walkers, like the TrotBot and Strider mechanism developed by [Wade] and [Ben Vagle], and their website is an excellent resource for prospective builders.

Continue reading “Tiny ESP32 Strider Walks The Walk”

Landbeest, A Single Servo Walking Robot

Walking robots have a rich history both on and off the storied pages of Hackaday, but if you will pardon the expression, theirs is not a field that’s standing still. It’s always pleasing to see new approaches to old problems, and the Landbeest built by [Dejan Ristic] is a great example.

It’s a four-legged walker with a gait dictated by a cam-and-follower mechanism that allows it to perform the full range of leg movement with only one motor. Each cam can control more than one leg in synchronisation, and in his most recent prototype, there are two such mechanisms that work on opposite corners of a four-legged machine. The legs are arranged in such a way that the two corner-to-corner pairs pivot at their centres in a similar manner to a pair of scissors; allowing a servo to steer the robot as it walks.

The result certainly isn’t as graceful as [Theo Janssen]’s Strandbeest, from which it evidently takes inspiration for its name, but it’s no less capable for it. After the break you can see a video he’s posted which clearly illustrates its operation and demonstrates its ability to traverse obstacles.

The only thing that’s missing are the files and software should you wish to create your own. He’s unapologetic about this, pointing out that he’d prefer to wait until he is satisfied with it before letting it go. Since he’s put a lot of work in so far and shows no sign of stopping, we’re sure he’ll reach that point soon enough.

Continue reading “Landbeest, A Single Servo Walking Robot”