New Part Day: STM32F7, An ARM Cortex-M7

It was announced last year, but ST is finally rolling out the STM32F7, the first microcontroller in production that is based on the ARM Cortex-M7.

The previous go-to part from the ST catalog was the STM32F4, an extremely powerful chip based on the ARM Cortex M4 processor. This chip was incredibly powerful in its time, and is still a respectable choice for any application that needs a lot of horsepower, but not a complete Linux system. We’ve seen the ~F4 chip pump out 800×600 VGA, drive a thermal imaging camera, and put OpenCV inside a webcam. Now there’s a new, even more powerful part on the market, and the mind reels thinking what might be possible.

Right now there a few STM32F7 parts out, both with speeds up to 216MHz, Flash between 512k and 1MB, and 320kB of RAM. Peripherals include Ethernet, USB OTG, SPDIF support, and I²S. The most advanced chip in the line includes a TFT LCD controller, and a crypto processor on-chip. All of the chips in the STM32F7 line are pin compatible with the STM32F4 line, with BGA and QFP packages available.

As with the introduction of all of ST’s microcontrollers, they’re rolling out a new Discovery board with this launch. It features Ethernet, a bunch of audio peripherals, USB OTG, apparently an Arduino-style pin layout, and a 4.3 inch, 480×272 pixel LCD with capacitive touch. When this is available through the normal distributors, it will sell for around $50. The chips themselves are already available from some of the usual distributors, for $17 to $20 in quantity one. That’s a chunk of change for a microcontroller, but the possibilities for what this can do are really only limited by an engineer’s imagination.

Android Donut Running On A Graphing Calculator

[Josh] is trying to fight a misconception that Android only runs on fast, powerful smartphones. He’s convinced Android will run on extremely low-end hardware, and after a great deal of searching, hit upon a great combination. He’s running Android Donut on a TI nSpire CX graphing calculator.

Unlike just about every other TI calculator, homebrew developers are locked out of the nSpire CX and CX CAS. Without the ability to run native applications on this calculator, [Josh] would be locked out of his platform of choice without the work of the TI calculator community and Ndless, the SDK for this series of calculators.

With the right development environment, [Josh] managed to get the full Android stack up and running and ironed the bugs out. Everything he’s done is available on the GitHub for this project, and with the instructions on the xda developers post, anyone can get a version of Android running on this TI calculator.

While [Josh] has Android Donut running along with most of the 1.6 apps, a terminal emulator, keyboard, WiFi, USB, and Bluetooth running, this calculator-come-Android isn’t as useful as you think it would be. The vast majority of calculator emulators on the Google Play store require Android version 2.2 and up. Yes, [Josh] can still run a TI-83 emulator on his calculator, but finding an app that’s compatible with his version of Android is a challenge.

Still, even with a 150MHz processor and 64MB of RAM – far less than what was found in phones that shipped with Donut – [Josh] is still getting surprisingly good performance out of his calculator. He can play some 2D games on it, and the ability to browse the web with a calculator is interesting, to say the least. It is, however, the perfect example that you don’t need the latest and greatest phone to run Android. Sometimes you don’t even need a phone.

Hackaday Prize Entry: Biohand

One of the greatest uses we’ve seen for 3D printing is prosthetics; even today, a professionally made prosthetic would cost thousands and thousands of dollars. For his entry to the Hackaday Prize, [Martin] is building a low-cost 3D printed hand that works just like a natural hand, but with motors instead of muscles and tendons.

There are a lot of 3D printed finger mechanisms around that use string and wires to move a finger around. This has its advantages: it’s extremely similar to the arrangement of tendons in a normal hand, but [Martin] wanted to see if there was a better way. He’s using a four-bar linkage instead of strings, and is driving each finger with a threaded rod and servo motor. It’s relatively strong; just the motor and drive screw system was able to lift 1kg, and this mechanical arrangement has the added bonus of using the servo’s potentiometer to provide feedback of the position of the finger to the drive electronics.

This is far from the only prosthetic hand project in the running for The Hackaday Prize. [OpenBionics] is working on a very novel mechanism to emulate the function of the human hand in their project, and [Amadon Faul] is going all out and casting metacarpals and phalanges out of aluminum in his NeoLimb project. They’re all amazing projects, and they’re all making great use of 3D printing technology, and by no means are there too many prosthetic projects entered in The Hackaday Prize.


The 2015 Hackaday Prize is sponsored by:

Codename Colossus: The HMC Boudicca

[Michael Sng], founder of [Machination Studio], wanted to create a toy line unlike anything the world has seen.  He has recently completed the first production prototype in the Codename Colossus toy line: the HMC Boudicca. The egg-shaped HMC Boudicca is tank-like with a definite Metal Slug vibe, but it’s almost a disservice calling it a toy.

The HMC Boudicca is over 20″ tall. It is composed of over 400 parts, a majority of which are 3D-printed or laser-cut. Internal parts are FDM while the external pieces are SLS printed. It is a kinetic piece that walks in a hexapodal fashion, so there are lots of servos, motors, sensors, and LEDs, that are controlled by an Arduino. A lot of work and attention to detail was put into this prototype. The HMC Boudicca was designed to be easily disassembled with a Phillips screwdriver. The electronic components are all plug-in devices, so no soldering is required when it comes time to replace a sensor or servo.

Codename Colossus is a toy line that is made to order and intended to be artisanal in nature. Each piece will be individually hand-painted and assembled like the HMC Boudicca. While no official prices are posted yet on the site, we assume these are not going to be cheap. In fact, the site states that each piece will have a 2% markup from the previously sold price to help maintain the value of the pieces and control cost inflation. This could be a source of contention for potential buyers. It underscores [Michael’s] philosophy that Codename Colossus is meant to be a collectible work of art, an antithesis to mass production.

Regardless of the business strategy, we are interested in seeing any additional designs for this series. It would be fun to see a whole bunch of these marching as one robot army!

Continue reading “Codename Colossus: The HMC Boudicca”

Prize Alert: Submit By Monday For Chance At Hundreds

For the past two weeks we’ve been on the lookout for the best 2015 Hackaday Prize entries which are using parts manufactured by Atmel, Freescale, Microchip, and Texas Instruments. All four are sponsors of this years initiative to solve problems faced by a large number of people.

list-banners-in-project-sidebarThe three-week mini-contest will come to a close on Monday and the Hackaday crew will begin to assign 200 prizes to the entries; 50 for each of the curated lists. Prizes include Mooshimeters, DS Logic Analyzers, Stickvise, Bluefruit BLE Sniffers, Cordwood Puzzle kits, and TV-B-Gone kits.

There are two things you need to do in order to be considered for this contest: make sure your project has been submitted as an official 2015 Hackaday Prize entry, and that the project is listed on the list associated with the parts manufacturer you’ve used in your project design. The easiest way to get on the list is to leave a comment on the .Stack thread.

You can check to ensure you’ve met these two requirements by viewing your project page and looking in the left sidebar. The square thumbnail photo at the top will have a black flag with the astronaut logo at “2015”. Below that you will see banners for the lists on which your project is included. You should be on at least one of the following lists: 2015 THP: Atmel Parts2015 THP: Freescale Parts2015 THP: Microchip Parts2015 THP: Texas Instruments Parts.

Don’t miss out on this stage of the contest. You stand a really great chance of being selected as a winner! And for those already on the lists we can offer some advice for rising to the top. Polish up your documentation. Tell us how the parts are used in your design, where you are in the prototyping process, and list the tasks you have yet to accomplish. Share the whole story of what you’re working on. Good luck!

Those looking to discover and be inspired by the existing entries should give Astronaut or Not a try. The side-by-side comparisons are a great way to browse, and could also win you some prizes.


The 2015 Hackaday Prize is sponsored by:

BeagleBones And Teensies Become KVMs

[pmf], like most of us, I’m sure, spends most of his days on a computer. He also has a smartphone he keeps at his side, but over the years he’s grown accustomed to typing on a real keyboard. He came up with the idea of making a USB switch that would allow his keyboard to control either his computer or his phone, and hit upon a really neat way of doing it. He’s using a BeagleBone Black and a Teensy to switch his keyboard between his computer and his phone with just a press of a button.

This homebrew smart KVM uses a BeagleBone Black for most of the heavy lifting. A keyboard and mouse is connected to the USB host port of the BeagleBone, and the main computer is connected to the device port. The BeagleBone is set up to pass through the USB keyboard and mouse to the computer with the help of what Linux calls a ‘gadget’ driver. This required an update to the Linux 4.0 kernel.

With the BeagleBone capable of being a USB pass through device, the next challenge was sending keypresses to another USB device. For this, a Teensy 2.0 was connected to the UART of the BeagleBone. According to [pmf], this is one of the few examples of the Teensy serving as a composite USB device – sending both keyboard and mouse info.

There are a few neat features for [pmf]’s build: the keyboard and mouse don’t disconnect when switching, and thanks to a slight modification of the USB OTG adapter, this will also charge a phone as well as allow for the use of a keyboard. Because the BeagleBone Black has more than one UART this build can also switch keyboards and mice between more than two computers. For those of us who invest heavily in keyboards, it’s a godsend.

Caption CERN Contest – I’ve Got My Eye On You

As week 20 of the Caption CERN Contest comes to a close, we can say that this scientist may have been a bit sleepy from all his hard work, but all our caption writers certainly were not! Thank’s to everyone who stayed up late and entered.

Whiteboards and their associated dry erase markers have become a staple in every office, school, and home. It’s getting hard to remember that everyone used blackboards not so long ago. High energy physics,and flammable dust probably are not a good mix. Let’s hope our sleeping scientist cleaned the erasers outdoors after he woke up.

The Funnies:

  • “A weekend at CERNies”- [Rob]
  • “After bitten by the Schrödinger’s cat, Doc Brown acquired the most useful power of a cat – being able to sleep anywhere, any time.” – [K.C. Lee]
  • “CERN’s infamous “wind tunnel” experiments” – [Rollyn01]

This week’s winner is [MechaTweak] with “During the great blackboard shortage of ’66, scientists went to great lengths to protect their unfinished work from premature erasure”. [MechaTweak] describes himself as a “Mild mannered design engineer by day, father of four crazy kids by night.” With all those kids running around, he’s going to enjoy having a Stickvise from The Hackaday Store. You can bet he’ll be using the Stickvise to solder up some boards for Shower water saver, his entry in the 2015 Hackaday Prize.

Week 21

cern-21-smThese two CERN scientists are looking through some kind of optical apparatus. There is a plano-convex lens mounted on an adjustable arm. The scientists appear to be looking through a window while adjusting some controls.

Is this some kind of physics experiment? Could it be research into psychomotor acuity? Maybe the dark-haired scientist is just getting her yearly CERN eye exam? You tell us!

This week’s prize is the ever poular Teensy 3.1 from The Hackaday Store.  Add your humorous caption as a comment to this project log. Make sure you’re commenting on the contest log, not on the contest itself.

As always, if you actually have information about the image or the people in it, let CERN know on theoriginal image discussion page.

Good Luck!