Three SPI Busses Are One Too Many On This Cheap Yellow Display

The Cheap Yellow Display may not be the fastest of ESP32 boards with its older model chip and 4 MB of memory, but its low price and useful array of on-board peripherals has made it something of a hit in our community. Getting the most out of the hardware still presents some pitfalls though, as [Mark Stevens] found out when using one for an environmental data logger. The problem was that display, touch sensor, and SD card had different SPI busses, of which the software would only recognise two. His solution involves a simple hardware mod, which may benefit many others doing similar work.

It’s simple enough, put the LCD and SD card on the same bus, retaining their individual chip select lines. There’s a track to be cut and a bit of wiring to be done, but nothing that should tax most readers too much. We’re pleased to see more work being done with this board, as it remains a promising platform, and any further advancements for it are a good thing. If you’re interested in giving it a go, then we’ve got some inspiration for you.

Linux Fu: A Warp Speed Prompt

If you spend a lot of time at the command line, you probably have either a very basic prompt or a complex, information-dense prompt. If you are in the former camp, or you just want to improve your shell prompt, have a look at Starship. It works on the most common shells on most operating systems, so you can use it everywhere you go, within reason. It has the advantage of being fast and you can also customize it all that you want.

What Does It Look Like?

It is hard to explain exactly what the Starship prompt looks like. First, you can customize it almost infinitely, so there’s that. Second, it adapts depending on where you are. So, for example, in a git-controlled directory, you get info about the git status unless you’ve turned that off. If you are in an ssh session, you’ll see different info than if you are logged in locally.

However, here’s a little animation from their site that will give you an idea of what you might expect: Continue reading “Linux Fu: A Warp Speed Prompt”

Chemistry Meets Mechatronics In This Engaging Art Piece

There’s a classic grade school science experiment that involves extracting juice from red cabbage leaves and using it as a pH indicator. It relies on anthocyanins, pigmented compounds that give the cabbage its vibrant color but can change depending on the acidity of the environment they’re in, from pink in acidic conditions to green at higher pH. And anthocyanins are exactly what power this unusual kinetic art piece.

Even before it goes into action, [Nathalie Gebert]’s Anthofluid is pretty cool to look at. The “canvas” of the piece is a thin chamber formed by plexiglass sheets, one of which is perforated by an array of electrodes. A quartet of peristaltic pumps fills the chamber with a solution of red cabbage juice from a large reservoir, itself a mesmerizing process as the purple fluid meanders between the walls of the chamber and snakes around and between the electrodes. Once the chamber is full, an X-Y gantry behind the rear wall moves to a random set of electrodes, deploying a pair of conductors to complete the circuit. When a current is applied, tendrils of green and red appear, not by a pH change but rather by the oxidation and reduction reactions occurring at the positive and negative electrodes. The colors gently waft up through the pale purple solution before fading away into nothingness. Check out the video below for the very cool results.

We find Anthofluid terribly creative, especially in the use of such an unusual medium as red cabbage juice. We also appreciate the collision of chemistry, electricity, and mechatronics to make a piece of art that’s so kinetic but also so relaxing at the same time. It’s the same feeling that [Nathalie]’s previous art piece gave us as it created images on screens of moving thread. Continue reading “Chemistry Meets Mechatronics In This Engaging Art Piece”

PiEEG Kit Is A Self-Contained Biosignal Laboratory

Back in 2023, we first brought you word of the PiEEG: a low-cost Raspberry Pi based device designed for detecting and analyzing electroencephalogram (EEG) and other biosignals for the purposes of experimenting with brain-computer interfaces. Developed by [Ildar Rakhmatulin], the hardware has gone through several revisions since then, with this latest incarnation promising to be the most versatile and complete take on the concept yet.

At the core of the project is the PiEEG board itself, which attaches to the Raspberry Pi and allows the single-board computer (SBC) to interface with the necessary electrodes. For safety, the PiEEG and Pi need to remain electrically isolated, so they would have to be powered by a battery. This is no problem while capturing data, as the Pi has enough power to process the incoming signals using the included Python tools, but could be an issue if you wanted to connect the PiEEG system to another computer, say.

For the new PiEEG Kit, the hardware is now enclosed in its own ABS carrying case, which includes an LCD right in the lid. While you’ve still got to provide your own power (such as a USB battery bank), having the on-board display removes the need to connect the Pi to some other system to visualize the data. There’s also a new PCB that allows the connection of additional environmental sensors, breakouts for I2C, SPI, and GPIO, three buttons for user interaction, and an interface for connecting the electrodes that indicates where they should be placed on the body right on the silkscreen.

The crowdsourcing campaign for the PiEEG Kit is set to begin shortly, and the earlier PiEEG-16 hardware is available for purchase currently if you don’t need the fancy new features. Given the fact that the original PiEEG was funded beyond 500% during its campaign in 2023, we imagine there’s going to be plenty of interest in the latest-and-greatest version of this fascinating project.

Continue reading “PiEEG Kit Is A Self-Contained Biosignal Laboratory”

World’s Smallest Blinky, Now Even Smaller

Here at Hackaday, it’s a pretty safe bet that putting “World’s smallest” in the title of an article will instantly attract comments claiming that someone else built a far smaller version of the same thing. But that’s OK, because if there’s something smaller than this nearly microscopic LED blinky build, we definitely want to know about it.

The reason behind [Mike Roller]’s build is simple: he wanted to build something smaller than the previous smallest blinky. The 3.2-mm x 2.5-mm footprint of that effort is a tough act to follow, but technology has advanced somewhat in the last seven years, and [Mike] took advantage of that by basing his design on an ATtiny20 microcontroller in a WLCSP package and an 0201 LED, along with a current-limiting resistor and a decoupling capacitor. Powering the project is a 220-μF tantalum capacitor, which at a relatively whopping 3.2 mm x 1.6 mm determines the size of the PCB, which [Mike] insisted on using.

Assembling the project was challenging, to say the least. [Mike] originally tried a laboratory hot plate to reflow the board, but when the magnetic stirrer played havoc with the parts, he switched to a hot-air rework station with a very low airflow. Programming the microcontroller almost seemed like it was more of a challenge; when the pogo pins he was planning to use proved too large for the job he tacked leads made from 38-gauge magnet wire to the board with the aid of a micro hot air tool.

After building version one, [Mike] realized that even smaller components were available, so there’s now a 2.4 mm x 1.5 mm version using an 01005 LED. We suspect there’ll be a version 3.0 soon, though — he mentions that the new TI ultra-small microcontrollers weren’t available yet when he pulled this off, and no doubt he’ll want to take a stab at this again.

Pick Up A Pebble Again

A decade ago, smartwatches were an unexplored avenue full of exotic promise. There were bleeding-edge and eye-wateringly expensive platforms from the likes of Samsung or Apple, but for the more experimental among technophiles there was the Pebble. Based on a microcontroller and with a relatively low-resolution display, it was the subject of a successful crowdfunding campaign and became quite the thing to have. Now long gone, it has survived in open-source form, and now if you’re a Pebble die-hard you can even buy a new Pebble. We’re not sure about their choice of name though, we think calling something the “Core 2 Duo” might attract the attention of Intel’s lawyers.

The idea is broadly the same as the original, and remains compatible with software from back in the day. New are some extra sensors, longer battery life, and an nRF52840 BLE microcontroller running the show. It certainly captures the original well, however we’re left wondering whether a 2013 experience still cuts it in 2025 at that price. We suspect in that vein it would be the ideal compliment to your game controller when playing Grand Theft Auto V, another evergreen 2013 hit.

We look forward to seeing where this goes, and we reported on the OS becoming open source earlier this year. Perhaps someone might produce a piece of open source hardware to do the same job?

Closeup of the original Manchester Baby CRT screen

Modern Computing’s Roots Or The Manchester Baby

In the heart of Manchester, UK, a groundbreaking event took place in 1948: the first modern computer, known as the Manchester Baby, ran its very first program. The Baby’s ability to execute stored programs, developed with guidance from John von Neumann’s theory, marks it as a pioneer in the digital age. This fascinating chapter in computing history not only reshapes our understanding of technology’s roots but also highlights the incredible minds behind it. The original article, including a video transcript, sits here at [TheChipletter]’s.

So, what made this hack so special? The Manchester Baby, though a relatively simple prototype, was the first fully electronic computer to successfully run a program from memory. Built by a team with little formal experience in computing, the Baby featured a unique cathode-ray tube (CRT) as its memory store – a bold step towards modern computing. It didn’t just run numbers; it laid the foundation for all future machines that would use memory to store both data and instructions. Running a test to find the highest factor of a number, the Baby performed 3.5 million operations over 52 minutes. Impressive, by that time.

Despite criticisms that it was just a toy computer, the Baby’s significance shines through. It was more than just a prototype; it was proof of concept for the von Neumann architecture, showing us that computers could be more than complex calculators. While debates continue about whether it or the ENIAC should be considered the first true stored-program computer, the Baby’s role in the evolution of computing can’t be overlooked.

Continue reading “Modern Computing’s Roots Or The Manchester Baby”