This 3D Cable Printer Remixes The Delta

When last we ran into [Daren Schwenke] he was showing off his 6-color delta printer that changes colors seamless mid-print. Right now he’s working on a printer that uses tensioned cables to precisely move a toolhead while maintaining enough solidity that [Daren] can tap on the toolhead without it budging at all.

It’s much more simple a rig than a gantry-style 3D printer, with a chassis shaped like a geodesic polyhedron consisting of fiberglass trusses (those driveway markers) secured by 3D-printed lugs, all controlled by a Beaglebone Green and four steppers. A key element of the build is the central steel rod, a 4′ repurposed garden stake which serves to stabilize the whole toolhead. In terms of  build diameter it can scale from around 200 mm to 600 mm. [Daren] aims to using Machinekit’s tripod kinematics for control and he also learned a bunch from RepRap’s Flying SkyDelta project.

For more 3D-printing goodness, be sure to check out [Daren]’s aforementioned 6-color delta.

Continue reading “This 3D Cable Printer Remixes The Delta”

Printrbot Teases Infinite Build Volume Printer

[Brook Drumm] of Printrbot is teasing a new 3D printer. This is no ordinary 3D printer; this is an infinite build volume 3D printer, the Next Big Thing™ in desktop fabrication.

The world was introduced to the infinite build volume 3D printer last March at the Midwest RepRap Festival with a built by [Bill Steele] from Polar 3D. The design of [Bill]’s printer began as simply a middle finger to MakerBot’s Automated Build Platform patent. This was patent engineering — [Bill] noticed the MakerBot patent didn’t cover build plates that weren’t offset to the plane of the print head, and it just so happened a printer with a tilted bed could also build infinitely long plastic parts.

While [Bill Steele]’s unnamed printer introduced the idea of an infinite build volume printer to the community, a few pieces of prior art popped up in the weeks and months after MRRF. Several years ago, [Andreas Bastian] developed the Lum Printer, an unbounded conveyor belt printer. A month after MRRF, Blackbelt 3D introduced their mega-scale tilted bed printer and later started a Kickstarter that has already reached $100,000 in pledges.

Right now, details are sparse on the Printrbelt, but there are a few educated guesses we can make. The belt of the Printrbelt appears to be Kapton film attached to some sort of substrate. The hotend and extruder are standard Printrbot accouterments, and the conveyor is powered by a geared stepper motor. All in all, pretty much what you would expect.

We do know that [Brook] and [Bill Steele] are working together on this printer, apparently with [Brook] in charge of the hardware and [Bill] taking either his slicing algorithm or firmware modifications (we’re not exactly sure where the ’tilt’ in the Gcode comes from) and getting this printer running.

While the Printrbelt isn’t ready for production quite yet, this is a fantastic advance in the state of consumer, desktop 3D printing. You can check out [Brook]’s teaser videos below.

Continue reading “Printrbot Teases Infinite Build Volume Printer”

The IP Of The Infinite Build Volume 3D Printer

Last week, the Blackbelt 3D printer launched on Kickstarter. What makes the Blackbelt 3D printer different than any other 3D printer on Kickstarter? This printer has an infinite build volume. It’s built for continuous production. As long as you have a large enough spool of filament, this printer will keep producing plastic parts with no downtime in between. The Blackbelt is a truly remarkable and innovative machine. Yes, it’s a bit expensive, but it’s designed for production and manufacturing, not some guy tinkering in his garage.

However, the Blackbelt 3D website includes two words that have sent the 3D printer community into an uproar. ‘Patent Pending’ is something no one in the community wants to see given the history of the industry and a few poor decisions from the first movers during the great 3D printer awakening of 2010. The idea of an infinite build volume printer that allows for continuous production is not new; we saw one last March at the Midwest RepRap Festival. The question, therefore, is what is covered by the upcoming Blackbelt patents, what is the prior art, and is it still possible to build an Open Source printer that uses these innovative techniques?

Continue reading “The IP Of The Infinite Build Volume 3D Printer”

Another Printer With An Infinite Build Volume

Very rarely do we see a 3D printer that is more than just a refinement of what’s currently standard practice. [Prusa]’s single-hotend, four-color printer makes the list, but that came out a while ago. The novel 32-bit controller board found in last year’s $200 Monoprice printer has the potential to change a cottage industry. Save those two exceptions, innovation in 3D printing really isn’t seeing the same gains we saw in 2010 or 2011.

A company out of the Netherlands, Blackbelt 3D, is bringing out the most innovative 3D printer we’ve seen since last March. It’s an infinite volume 3D printer that’s built for autonomous production. This printer can produce row after row of 3D printed parts, or it can print an object longer than the build plate. If you have enough time, filament, and electricity, there’s no reason you couldn’t print a plastic beam hundreds of meters long.

The specs on this printer are about what you would expect from a large machine meant for industry or prototyping, as opposed to a machine designed to print out tugboats and fidget spinners. The Blackbelt uses interchangeable print heads for the hotend with 0.4, 0.6 or 0.8 mm nozzles. The filament feed is a Bowden with the extruder hidden under the control panel. The frame is explicitly Bosch extrusion, and the machine’s build volume is 340 mm by 340 mm by whatever. Retail price (on Kickstarter) comes in at €9,500, but for an extra €3,000 you can also get a neat stand with casters on the bottom. Of course, with an infinite build volume, you could also print a stand. Continue reading “Another Printer With An Infinite Build Volume”

Hackaday Prize Entry: RepRap Helios

Did you know that most of the current advances in desktop consumer 3D printing can be traced back to a rather unknown project started in 2005? This little-known RepRap project was dedicated to building Open Source hardware that was self-replicating by design. Before the great mindless consumerization of 3D printing began, the RepRap project was the greatest hope for Open Source hardware, and a sea change in what manufacturing could be.

While the RepRap project still lives on in companies like Lulzbot, Prusa, SeeMeCNC, and others, the vast community dedicated to creating Open Hardware for desktop manufacturing has somehow morphed into YouTube channels that feature 3D printed lions, 3D printed Pokemon, and a distinct lack of 3D printed combs. Still, though, there are people out there contributing to the effort.

[Nick Seward] is famous in the world of RepRap. He designed the RepRap GUS Simpson, an experimental 3D printer that is able to print all of its components inside its own build volume. The related LISA Simpson is an elegant machine that is unlike any other delta robot we’ve seen. He’s experimented with Core XZ machines for years now — a design that is only now appearing on AliBaba from random Chinese manufacturers. In short, [Nick Seward] is one of the greats of the RepRap project.

[Nick] is designing a new kind of RepRap, and he’s entered it in the Hackaday Prize. It can print most of its own component parts, it has an enormous build volume, and it’s unlike any 3D printer you’ve seen before. It’s a SCARA — not a, ‘robotic arm’ because SCARA is an acronym for Selective Compliance Articulated Robot Arm — that puts all the motors in the non-moving portion of the base. Its design is inspired by the RepRap Morgan, a printer whose designer won $20,000 in the GADA prize for being mostly self-replicating.

Improvements over the RepRap Morgan include a huge build volume (at least three 200x200mm squares can be placed in this printer’s build volume), a relatively fast print speed, high accuracy and precision, and auto bed leveling. Despite being more capable than some RepRap printers in some areas, the RepRap Helios should wind up being cheaper than most RepRap printers. It can also print most of its component parts, bringing us ever closer to a truly self-replicating machine.

You can check out a few of the videos of this printer in action below.

Continue reading “Hackaday Prize Entry: RepRap Helios”

VCF: 3D Printing In The 80s

The Vintage Computer Festival East is going down right now, and I’m surrounded by the height of technology from the 1970s and 80s. Oddly enough, Hackaday frequently covers another technology from the 80s, although you wouldn’t think of it as such. 3D printing was invented in the late 1980s, and since patents are only around for 20 years, this means 3D printing first became popular back in the 2000’s.

In the 1970s, the first personal computers came out of garages. In the early 2000s, the first 3D printers came out of workshops and hackerspaces. These parallels pose an interesting question – is it possible to build a 1980s-era 3D printer controlled by a contemporary computer? That was the focus of a talk from [Ethan Dicks] of the Columbus Idea Foundry this weekend at the Vintage Computer Festival.

Continue reading “VCF: 3D Printing In The 80s”

The Midwest RepRap Festival Spectacular

Every year, nestled between a swine auction and beef auction at the fairgrounds in Goshen, Indiana, the world’s greatest 3D-printing meetup happens. The Midwest RepRap Festival draws the greatest minds in 3D printing from around the world, with teams flying in from Prague, Oxford, and Hong Kong. This year was bigger than any other year. Over 1,000 people ventured forth into the sticks to attend this awesome festival dedicated to DIY printers.

What did we see this year? The PartDaddy, SeeMeCNC’s 18-foot-tall delta printer made an appearance. We saw a new extruder from E3D, and an announcement that Open Source filaments will soon be a reality. True color printing with a five filament CMYKW system is weird and cool. DIY resin printers using laser diodes and galvos are now a thing. An Easy Break Oven isn’t broken. Printers with an infinite build volume now exist, and it skirts around a MakerBot patent, too.

There was more to see at MRRF than a single weekend would allow. [Jason Kridner] from BeagleBone was there talking about the latest in fancy single-chip Linux computers. Hackerspaces were there talking about their coolest builds and doing the calculations necessary to strap model rocket engines to 3D printed rockets. A few local colleges sent teams out to talk about their efforts to bring additive manufacturing to their programs. YouTube personalities were there. Check out the rest of the goodies we saw below.

Continue reading “The Midwest RepRap Festival Spectacular”