“Look Ma, No Gyros!”: A Self-Balancing Mechanical Velociraptor

You’ve got to walk before you can run, right? Perhaps not, if this bipedal dino-like running robot is any indication.

Officially dubbed a “Planar Elliptical Runner,” the bot is a test platform for bipedal locomotion from the Institute for Human and Machine Cognition. Taking inspiration from the gait of an ostrich — we think it looks more like a T. rex or velociraptor, but same difference — [Jerry Pratt]’s team at IHMC have built something pretty remarkable. Contrary to all the bipedal and quadrupedal robots we’ve seen, like Boston Dynamics’ Big Dog and PETMAN, which all fairly bristle with sensors and actuators, the PER is very stripped down.

A single motor runs the entire drive chain using linkages that will look familiar to anyone who has taken an elliptical trainer apart, and there’s not a computer or sensor on board. The PER keeps its balance by what the team calls “reactive resilience”: torsion springs between the drive sprocket and cranks automatically modulate the power to both the landing leg and the swing leg to confer stability during a run. The video below shows this well if you single-frame it starting at 2:03; note the variable angles of the crank arms as the robot works through its stride.

The treadmill tests are constrained by a couple of plastic sheets, but the next version will run free. It’s not clear yet how directional control will be achieved, not is it obvious how the PER will be able to stop running and keep its balance. But it’s an interesting advance in locomotion and we look forward to seeing what IHMC’s next trick will be.

Continue reading ““Look Ma, No Gyros!”: A Self-Balancing Mechanical Velociraptor”

Anatomically Correct Plotter Avoids Back Scratch Fever

Everybody needs somebody sometimes, even if it’s just for when your back itches. But directing your itchy interlocutor to the correct spot can be a spatial relations challenge: “Right in the middle… no, down a bit… left… no, the other left! Harder! Wait, not that hard!” Why bother with all that messy interpersonal communication and human contact when you can build an automated, precision-guided back scratcher?

[VijeMiller] has aluminum extrusion tastes on a cardboard budget, but don’t let that put you off this clever build. The idea is pretty simple: a two-axis plotter that moves a rotary-action business end to any point within a V-shaped work envelope. The Arduino in the base talks to a smartphone app that lets you point to exactly the spot in need of attention on what for most of us would be an incredibly optimistic photorealistic map of the dorsal aspect of the body (mildly NSFW photo in the link above dips below the posterior border). Point, click, sweet relief.

The video below shows the rig in action, along with the Thespian skills we’ve come to know and love from [VijeMiller] with such classics as the fake floating 19th green, the no-idling-while-texting alert, and the more recent ker-sploosh fighting foam filled toilet. It does seem like he changed his name from [TVMiller] somewhere along the line, but he can’t throw us off the trail that easily.

Continue reading “Anatomically Correct Plotter Avoids Back Scratch Fever”

Hackaday Links Column Banner

Hackaday Links: May 7, 2017

The International Journal of PoC||GTFO is the hacker quarterly we all deserve. It’s Pastor Manul Laphroaig’s publication featuring crazy exploits and builds and neat woodcut illustrations. It’s going to be a freakin’ dead tree book published by No Starch Press. The word on the street is this is a literal bible. No, really. No Starch found a place that publishes (manufactures?) bibles, and they sent over the PDFs. There will probably be a Hackaday review of this book, but since all the content is freely available online, this review will literally only be judging a book by its cover.

Hoverboards are more innovative than a selfie stick. The snuggie is an innovative product. The iPhone came before greek yogurt. These are the findings of an online consumer research poll being held by CB Insights. As of this writing (and it might be updated by the time this is published), the bracket for the ‘Most Innovative Consumer Product Since The iPhone’ is down to two competitors — the Tesla Model S and the Raspberry Pi. That’s more opinion than anything, but check out the bracket. The Amazon Echo is more innovative than the ‘desktop 3D printer’, which as we all know was invented by MakerBot. The Dollar Shave Club — otherwise known as giving away the razor and selling subscriptions for the blades — is innovative. Taco Bell didn’t make it past the first round. What the hell is going on here?

This robot plays tiddlywinks. What’s tiddlywinks? It’s that game where you put your hand down on a table and stab a knife between your fingers. It’s a test of fine motor skills and courage, or in this case, programming. This robot also plays tiddlywinks.

This is a Kickstarter for an FPGA’d ZX Spectrum. With the blessing of Sky UK — the owner of the Amstrad brand — this team is cloning the ZX Spectrum, adding HDMI and SD card storage, creating a new enclosure, and calling this project the Spectrum Next. It’s fully compatible with the original and future proofs the Speccy for another few decades.

The Internet of Things comes to alcohol. This vodka comes with a wrap-around LED display that apparently has Bluetooth and is programmable with an iPhone or Android device. Why does this exist? Because it’ll sell. [Bryan Williams] bought one of these bottles and sent this in on the tip line. He’s currently waiting for the batteries to die so he can bust out the Dremel. If anyone else out there wants to check this out, it’s $11 at Sam’s Club.

Need a Z80 C compiler? Here you go.

Clickspring, the guy who has put far, far too much effort into building a clock is now working on the Antikythera Mechanism. His latest video demonstrates how the main plates of the Antikythera mechanism come together. There’s some interesting stuff here, but we’re really waiting for the main gears.

YouTube is well known for the technical astuteness of its community and the fair and level-headed comment section. This, for a short time, was one of the top trending videos on YouTube. It’s ‘free energy’ from two power strips. All you need to do is coil the leads of the power strips around each other. Free intermittent energy for life!

Hackaday Prize Entry: RepRap Helios

Did you know that most of the current advances in desktop consumer 3D printing can be traced back to a rather unknown project started in 2005? This little-known RepRap project was dedicated to building Open Source hardware that was self-replicating by design. Before the great mindless consumerization of 3D printing began, the RepRap project was the greatest hope for Open Source hardware, and a sea change in what manufacturing could be.

While the RepRap project still lives on in companies like Lulzbot, Prusa, SeeMeCNC, and others, the vast community dedicated to creating Open Hardware for desktop manufacturing has somehow morphed into YouTube channels that feature 3D printed lions, 3D printed Pokemon, and a distinct lack of 3D printed combs. Still, though, there are people out there contributing to the effort.

[Nick Seward] is famous in the world of RepRap. He designed the RepRap GUS Simpson, an experimental 3D printer that is able to print all of its components inside its own build volume. The related LISA Simpson is an elegant machine that is unlike any other delta robot we’ve seen. He’s experimented with Core XZ machines for years now — a design that is only now appearing on AliBaba from random Chinese manufacturers. In short, [Nick Seward] is one of the greats of the RepRap project.

[Nick] is designing a new kind of RepRap, and he’s entered it in the Hackaday Prize. It can print most of its own component parts, it has an enormous build volume, and it’s unlike any 3D printer you’ve seen before. It’s a SCARA — not a, ‘robotic arm’ because SCARA is an acronym for Selective Compliance Articulated Robot Arm — that puts all the motors in the non-moving portion of the base. Its design is inspired by the RepRap Morgan, a printer whose designer won $20,000 in the GADA prize for being mostly self-replicating.

Improvements over the RepRap Morgan include a huge build volume (at least three 200x200mm squares can be placed in this printer’s build volume), a relatively fast print speed, high accuracy and precision, and auto bed leveling. Despite being more capable than some RepRap printers in some areas, the RepRap Helios should wind up being cheaper than most RepRap printers. It can also print most of its component parts, bringing us ever closer to a truly self-replicating machine.

You can check out a few of the videos of this printer in action below.

Continue reading “Hackaday Prize Entry: RepRap Helios”

The Internet Connected Dog Treat Machine

[Eric] and [Shirin] have a dog called [Pickles], who is the kind of animal that if you are a dog lover you will secretly covet. They evidently dote upon [Pickles], but face the problem that they can’t always be at home to express their appreciation of him. But rather than abandon him entirely, they’ve applied technology to the problem. [Eric] has built an Internet-connected dog treat dispenser, through which they can dispense treats, and watch the lucky mutt wolfing them down.

The body of the machine has been made with lasercut acrylic, and the dispenser mechanism is a rotating hopper driven by a stepper motor. The whole thing — in all its transparent glory — is controlled through a Raspberry Pi, which plays a sound clip of [Shirin] calling [Pickles] for his treat, records his dining enjoyment with its camera, and emails the result to his owners. Behind the scenes it hosts an MQTT server, which can be triggered via an iPhone app, Alexa, or the adafruit.io site. Imagine for a moment: “Alexa, feed my dog!”. It has a ring to it.

He makes the point that this machine is not simply limited to dispensing treats, it could be used to engage [Pickles] in more activities. He hints at a future project involving a ball throwing device (have you ever seen such joy from a dog). There’s no substitute for being there with your dog, but maybe with this device they can make their dog’s life a little less of, well, a dog’s life.

You can see the machine in action in the video we’ve posted below the break.

Continue reading “The Internet Connected Dog Treat Machine”

Sorting Two Tonnes Of Lego

Have you ever taken an interest in something, and then found it’s got a little out of hand as your acquisitions spiral into a tidal wave of bags and boxes? [Jacques Mattheij] found himself in just that position with Lego. His online purchases had run away with him, and he had a garage packed with “two metric tonnes” of the little coloured bricks.

Disposing of Lego is fairly straightforward, there is a lively second-hand market. But to maximise the return it is important to be in control of what you have, to avoid packaging up fake, discoloured, damaged, or dirty parts. This can become a huge job if you do it by hand, so he built a Lego sorting machine to do the job for him.

The machine starts with a hopper for the loose Lego, with a slow belt that tips individual parts down a chute to a faster belt derived from a running trainer. On that they run past a camera whose images are analysed through a neural net, and based on its identification the parts are directed into appropriate bins with carefully timed jets of compressed air.

The result is a surprisingly fast way to sort large amounts of bricks without human intervention. He’s posted some videos, one of which we’ve placed below the break, so you can see for yourselves.

Continue reading “Sorting Two Tonnes Of Lego”

Remotely Controlling A Not-So-Miniature Hot Air Balloon

Calling [Matt Barr]’s remote controlled hot air balloon a miniature is a bit misleading. Sure, it’s small compared with the balloons that ply cold morning skies with paying passengers and a bottle of champagne for the landing. Having been in on a few of those landings, we can attest to the size of the real thing. They’re impressively big when you’re up close to them.

While [Matt]’s balloon is certainly smaller, it’s not something you’d just whip together in an afternoon. Most of [Matt]’s build log concentrates mainly on the gondola and its goodies — the twin one-pound camp stove-style propane tanks, their associated plumbing, and the burner, a re-tasked propane weed torch from Harbor Freight. Remote control is minimal; just as in a full-size balloon, all the pilot can really do is turn the burner on or off. [Matt]’s approach is a high-torque RC servo to control the burner valve, which is driven by an Arduino talking to the ground over a 2.4-GHz RF link. The balloon is big enough to lift 30 pounds and appears to be at least 12 feet tall; we’d think such a craft would run afoul of some civil aviation rules, so perhaps it’s best that the test flight below was a tethered one.

Sadly, no instructions are included for making the envelope, which would be a great excuse for anyone to learn a little about sewing. And knowing how to roll your own hot air balloon might come in handy someday.

Continue reading “Remotely Controlling A Not-So-Miniature Hot Air Balloon”